Frank Dimroth
Frank Dimroth
Fraunhofer Institut für Solare Energiesysteme ISE
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit
J Wallentin, N Anttu, D Asoli, M Huffman, I Åberg, MH Magnusson, ...
Science 339 (6123), 1057-1060, 2013
Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight
W Guter, J Schöne, SP Philipps, M Steiner, G Siefer, A Wekkeli, E Welser, ...
Applied Physics Letters 94 (22), 2009
Wafer bonded four‐junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency
F Dimroth, M Grave, P Beutel, U Fiedeler, C Karcher, TND Tibbits, E Oliva, ...
Progress in Photovoltaics: Research and Applications 22 (3), 277-282, 2014
Monolithic photoelectrochemical device for direct water splitting with 19% efficiency
WH Cheng, MH Richter, MM May, J Ohlmann, D Lackner, F Dimroth, ...
ACS Energy Letters 3 (8), 1795-1800, 2018
Four-junction wafer-bonded concentrator solar cells
F Dimroth, TND Tibbits, M Niemeyer, F Predan, P Beutel, C Karcher, ...
IEEE Journal of photovoltaics 6 (1), 343-349, 2015
The 2020 photovoltaic technologies roadmap
GM Wilson, M Al-Jassim, WK Metzger, SW Glunz, P Verlinden, G Xiong, ...
Journal of Physics D: Applied Physics 53 (49), 493001, 2020
Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure
MM May, HJ Lewerenz, D Lackner, F Dimroth, T Hannappel
Nature Communications 6 (1), 8286, 2015
III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration
R Cariou, J Benick, F Feldmann, O Höhn, H Hauser, P Beutel, N Razek, ...
Nature Energy 3 (4), 326-333, 2018
Solar hydrogen production by water splitting with a conversion efficiency of 18%
G Peharz, F Dimroth, U Wittstadt
International Journal of Hydrogen Energy 32 (15), 3248-3252, 2007
Increasing the efficiency of fluorescent concentrator systems
JC Goldschmidt, M Peters, A Bösch, H Helmers, F Dimroth, SW Glunz, ...
Solar Energy Materials and Solar Cells 93 (2), 176-182, 2009
High-efficiency multijunction solar cells
F Dimroth, S Kurtz
MRS bulletin 32 (3), 230-235, 2007
Spectral mismatch correction and spectrometric characterization of monolithic III–V multi‐junction solar cells
M Meusel, R Adelhelm, F Dimroth, AW Bett, W Warta
Progress in Photovoltaics: Research and Applications 10 (4), 243-255, 2002
High‐efficiency solar cells from III‐V compound semiconductors
F Dimroth
physica status solidi c 3 (3), 373-379, 2006
III-V compounds for solar cell applications
AW Bett, F Dimroth, G Stollwerck, OV Sulima
Applied Physics A 69, 119-129, 1999
A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror
HL Chen, A Cattoni, R De Lépinau, AW Walker, O Höhn, D Lackner, ...
Nature Energy 4 (9), 761-767, 2019
Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding
K Derendorf, S Essig, E Oliva, V Klinger, T Roesener, SP Philipps, ...
IEEE Journal of Photovoltaics 3 (4), 1423-1428, 2013
Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions
SP Philipps, G Peharz, R Hoheisel, T Hornung, NM Al-Abbadi, F Dimroth, ...
Solar Energy Materials and Solar Cells 94 (5), 869-877, 2010
GaAs converters for high power densities of laser illumination
E Oliva, F Dimroth, AW Bett
Progress in Photovoltaics: Research and Applications 16 (4), 289-295, 2008
Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency
B Mitchell, G Peharz, G Siefer, M Peters, T Gandy, JC Goldschmidt, ...
Progress in Photovoltaics: Research and Applications 19 (1), 61-72, 2011
High-voltage GaAs photovoltaic laser power converters
J Schubert, E Oliva, F Dimroth, W Guter, R Loeckenhoff, AW Bett
IEEE Transactions on Electron Devices 56 (2), 170-175, 2009
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20