The StarCraft Multi-Agent Challenge M Samvelyan, T Rashid, C Schroeder de Witt, G Farquhar, N Nardelli, ... Proceedings of the 18th International Conference on Autonomous Agents and …, 2019 | 293 | 2019 |
A Systematic Comparison of Bayesian Deep Learning Robustness in Diabetic Retinopathy Tasks A Filos, S Farquhar, AN Gomez, TGJ Rudner, Z Kenton, L Smith, ... arXiv preprint arXiv:1912.10481, 2019 | 65* | 2019 |
MultiNet: Segmenting Flooded Buildings via Fusion of Multiresolution, Multisensor, and Multitemporal Satellite Imagery TGJ Rudner, M Rußwurm, J Fil, R Pelich, B Bischke, V Kopackova, ... Proceedings of the AAAI Conference on Artificial Intelligence 33, 2019 | 61 | 2019 |
VIREL: A Variational Inference Framework for Reinforcement Learning M Fellows, A Mahajan, TGJ Rudner, S Whiteson Advances in Neural Information Processing Systems, 2019 | 31 | 2019 |
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning Z Nado, N Band, M Collier, J Djolonga, MW Dusenberry, S Farquhar, ... arXiv preprint arXiv:2106.04015, 2021 | 12 | 2021 |
Tractable Function-Space Variational Inference in Bayesian Neural Networks TGJ Rudner, Z Chen, YW Teh, Y Gal Third Symposium on Advances in Approximate Bayesian Inference, 2021 | 9* | 2021 |
Inter-domain Deep Gaussian Processes TGJ Rudner, D Sejdinovic, Y Gal Proceedings of the 37th International Conference on Machine Learning, 2020 | 9* | 2020 |
On the Connection between Neural Processes and Gaussian Processes with Deep Kernels TGJ Rudner, V Fortuin, YW Teh, Y Gal Workshop on Bayesian Deep Learning (NeurIPS 2018), 2018 | 7 | 2018 |
Outcome-Driven Reinforcement Learning via Variational Inference TGJ Rudner, VH Pong, R McAllister, Y Gal, S Levine Advances in Neural Information Processing Systems, 2021 | 5 | 2021 |
The starcraft multi-agent challenge.(2019) M Samvelyan, T Rashid, CS De Witt, G Farquhar, N Nardelli, TGJ Rudner, ... arXiv preprint arXiv:1902.04043, 2019 | 5 | 2019 |
Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks N Band, TGJ Rudner, Q Feng, A Filos, Z Nado, MW Dusenberry, G Jerfel, ... Advances in Neural Information Processing Systems, 2021 | 4 | 2021 |
On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations TGJ Rudner, C Lu, MA Osborne, Y Gal, YW Teh Advances in Neural Information Processing Systems, 2021 | 4 | 2021 |
The Natural Neural Tangent Kernel: Neural Network Training Dynamics under Natural Gradient Descent TGJ Rudner, F Wenzel, YW Teh, Y Gal Workshop on Bayesian Deep Learning (NeurIPS 2019), 2019 | 4 | 2019 |
Continual Learning via Function-Space Variational Inference TGJ Rudner, FB Smith, Q Feng, YW Teh, Y Gal International Conference on Machine Learning, 2022 | 2 | 2022 |
On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes TGJ Rudner, O Key, Y Gal, T Rainforth Proceedings of the 38th International Conference on Machine Learning, 2021 | 1 | 2021 |
Key Concepts in AI Safety: An Overview TGJ Rudner, H Toner CSET Issue Brief, 2021 | 1 | 2021 |
Key Concepts in AI Safety: Specification in Machine Learning TGJ Rudner, H Toner CSET Issue Brief, 2021 | | 2021 |
PCA Subspaces Are Not Always Optimal for Bayesian Learning A Bense, A Joudaki, TGJ Rudner, V Fortuin NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and …, 2021 | | 2021 |
Continual Learning via Function-Space Variational Inference: A Unifying View TGJ Rudner, FB Smith, Q Feng, YW Teh, Y Gal Workshop on Theory and Foundations of Continual Learning (ICML 2021), 2021 | | 2021 |
Key Concepts in AI Safety: Interpretability in Machine Learning TGJ Rudner, H Toner CSET Issue Brief, 2021 | | 2021 |