Folgen
Luca Franceschi
Luca Franceschi
Amazon Web Services
Bestätigte E-Mail-Adresse bei amazon.de
Titel
Zitiert von
Zitiert von
Jahr
Bilevel programming for hyperparameter optimization and meta-learning
L Franceschi, P Frasconi, S Salzo, R Grazzi, M Pontil
International Conference on Machine Learning, 1568-1577, 2018
4612018
Forward and reverse gradient-based hyperparameter optimization
L Franceschi, M Donini, P Frasconi, M Pontil
International Conference on Machine Learning, 1165-1173, 2017
2762017
Learning discrete structures for graph neural networks
L Franceschi, M Niepert, M Pontil, X He
International conference on machine learning, 1972-1982, 2019
2372019
On the iteration complexity of hypergradient computation
R Grazzi, L Franceschi, M Pontil, S Salzo
International Conference on Machine Learning, 3748-3758, 2020
902020
Fast and continuous foothold adaptation for dynamic locomotion through cnns
OAV Magana, V Barasuol, M Camurri, L Franceschi, M Focchi, M Pontil, ...
IEEE Robotics and Automation Letters 4 (2), 2140-2147, 2019
552019
Implicit MLE: backpropagating through discrete exponential family distributions
M Niepert, P Minervini, L Franceschi
Advances in Neural Information Processing Systems 34, 14567-14579, 2021
232021
MARTHE: Scheduling the Learning Rate Via Online Hypergradients
M Donini, L Franceschi, O Majumder, M Pontil, P Frasconi
Proceedings of the 29th International Joint Conference on Artificial …, 2020
15*2020
A bridge between hyperparameter optimization and learning-to-learn
L Franceschi, M Donini, P Frasconi, M Pontil
arXiv preprint arXiv:1712.06283, 2017
142017
A Speaker Adaptive DNN Training Approach for Speaker-independent Acoustic Inversion
L Badino, L Franceschi, R Arora, M Donini, M Pontil
Proc. Interspeech 2017, 984-988, 2017
52017
Fast and continuous foothold adaptation for dynamic locomotion through convolutional neural networks
O Villarreal, V Barasuol, M Camurri, M Focchi, L Franceschi, M Pontil, ...
IEEE Robotics and Automation Letters (RA-L), 2019
42019
Far-HO: A bilevel programming package for hyperparameter optimization and meta-learning
L Franceschi, R Grazzi, M Pontil, S Salzo, P Frasconi
arXiv preprint arXiv:1806.04941, 2018
32018
On hyperparameter optimization in learning systems
L Franceschi, M Donini, P Frasconi, M Pontil
32017
DAG learning on the permutahedron
V Zantedeschi, L Franceschi, J Kaddour, MJ Kusner, V Niculae
arXiv preprint arXiv:2301.11898, 2023
22023
REFACTOR GNNS: Revisiting Factorisation-based Models from a Message-Passing Perspective
Y Chen, P Mishra, L Franceschi, P Minervini, P Stenetorp, S Riedel
arXiv preprint arXiv:2207.09980, 2022
12022
A Unified Framework for Gradient-based Hyperparameter Optimization and Meta-learning
L Franceschi
UCL (University College London), 2021
12021
Graph structure learning for GCNs
L Franceschi, M Niepert, M Pontil, X He
A workshop paper at International Conference on Learning Representations (ICLR), 2019
12019
Deep convolutional terrain assessment for visual reactive footstep correction on dynamic legged robots
O Villarreal, V Barasuol, M Camurri, M Focchi, L Franceschi, M Pontil, ...
IROS 2018 Workshop: Machine Learning in Robot Motion Planning, 2018
12018
Learning Discrete Directed Acyclic Graphs via Backpropagation
AJ Wren, P Minervini, L Franceschi, V Zantedeschi
arXiv preprint arXiv:2210.15353, 2022
2022
Adaptive Perturbation-Based Gradient Estimation for Discrete Latent Variable Models
P Minervini, L Franceschi, M Niepert
arXiv preprint arXiv:2209.04862, 2022
2022
DAG Learning via Sparse Relaxations
V Zantedeschi, L Franceschi, J Kaddour, M Kusner, V Niculae
International Conference on Learning Representations, 0
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20