Folgen
Andrej Risteski
Andrej Risteski
Bestätigte E-Mail-Adresse bei andrew.cmu.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
A latent variable model approach to pmi-based word embeddings
S Arora, Y Li, Y Liang, T Ma, A Risteski
Transactions of the Association for Computational Linguistics 4, 385-399, 2016
5982016
The Risks of Invariant Risk Minimization
E Rosenfeld, P Ravikumar, A Risteski
International Conference on Learning Representations (ICLR), 2020, 2020
2992020
Linear algebraic structure of word senses, with applications to polysemy
S Arora, Y Li, Y Liang, T Ma, A Risteski
Transactions of the Association of Computational Linguistics 6, 483-495, 2018
2642018
Do GANs learn the distribution? some theory and empirics
S Arora, A Risteski, Y Zhang
International Conference on Learning Representations (ICLR), 2019, 2018
1782018
On the ability of neural nets to express distributions
H Lee, R Ge, T Ma, A Risteski, S Arora
Conference on Learning Theory, 1271-1296, 2017
1032017
Approximability of Discriminators Implies Diversity in GANs
Y Bai, T Ma, A Risteski
International Conference on Learning Representations (ICLR), 2020, 2018
852018
Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization
E Rosenfeld, P Ravikumar, A Risteski
arXiv preprint arXiv:2202.06856, 2022
762022
Random walks on context spaces: Towards an explanation of the mysteries of semantic word embeddings
S Arora, Y Li, Y Liang, T Ma, A Risteski
arXiv preprint arXiv:1502.03520, 385-399, 2015
662015
Beyond log-concavity: Provable guarantees for sampling multi-modal distributions using simulated tempering langevin monte carlo
H Lee, A Risteski, R Ge
Advances in neural information processing systems 31, 7847-7856, 2018
57*2018
How do transformers learn topic structure: Towards a mechanistic understanding
Y Li, Y Li, A Risteski
International Conference on Machine Learning, 19689-19729, 2023
552023
Automated WordNet Construction Using Word Embeddings
M Khodak, A Risteski, C Fellbaum, S Arora
Proceedings of the 1st Workshop on Sense, Concept and Entity Representations …, 2017
53*2017
Statistical Efficiency of Score Matching: The View from Isoperimetry
F Koehler, A Heckett, A Risteski
arXiv preprint arXiv:2210.00726, 2022
452022
Mean-field approximation, convex hierarchies, and the optimality of correlation rounding: a unified perspective
V Jain, F Koehler, A Risteski
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing …, 2019
412019
Algorithms and matching lower bounds for approximately-convex optimization
A Risteski, Y Li
Advances in Neural Information Processing Systems 29, 4745-4753, 2016
412016
Recovery guarantee of weighted low-rank approximation via alternating minimization
Y Li, Y Liang, A Risteski
International Conference on Machine Learning, 2358-2367, 2016
392016
Provable learning of noisy-or networks
S Arora, R Ge, T Ma, A Risteski
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing …, 2017
352017
Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments
Y Chen, E Rosenfeld, M Sellke, T Ma, A Risteski
Conference on Neural Information Processing Systems (NeurIPS), 2022, 2021
342021
Recovery guarantee of non-negative matrix factorization via alternating updates
Y Li, Y Liang, A Risteski
Advances in Neural Information Processing Systems, 4987-4995, 2016
342016
Empirical study of the benefits of overparameterization in learning latent variable models
RD Buhai, Y Halpern, Y Kim, A Risteski, D Sontag
International Conference on Machine Learning, 1211-1219, 2020
33*2020
Representational aspects of depth and conditioning in normalizing flows
F Koehler, V Mehta, A Risteski
International Conference on Machine Learning, 5628-5636, 2021
302021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20