Follow
Mo Lotfollahi
Mo Lotfollahi
Welcome Sanger institute,
Verified email at sanger.ac.uk - Homepage
Title
Cited by
Cited by
Year
Deep packet: A novel approach for encrypted traffic classification using deep learning
M Lotfollahi, MJ Siavoshani, RSH Zade, M Saberian
Soft Computing, 1-14, 2019
6842019
scGen predicts single-cell perturbation responses
M Lotfollahi, FA Wolf, FJ Theis
Nature methods 16 (8), 715-721, 2019
2092019
Squidpy: a scalable framework for spatial omics analysis
G Palla, H Spitzer, M Klein, D Fischer, AC Schaar, LB Kuemmerle, ...
Nature methods 19 (2), 171-178, 2022
1842022
Mapping single-cell data to reference atlases by transfer learning
M Lotfollahi, M Naghipourfar, MD Luecken, M Khajavi, M Büttner, ...
Nature biotechnology 40 (1), 121-130, 2022
181*2022
A Python library for probabilistic analysis of single-cell omics data
A Gayoso, R Lopez, G Xing, P Boyeau, V Valiollah Pour Amiri, J Hong, ...
Nature biotechnology 40 (2), 163-166, 2022
1102022
Conditional out-of-distribution generation for unpaired data using transfer VAE
M Lotfollahi, M Naghipourfar, FJ Theis, FA Wolf
Bioinformatics 36 (Supplement_2), i610–i617, 2020
57*2020
Predicting cellular responses to complex perturbations in high‐throughput screens
M Lotfollahi, A Klimovskaia Susmelj, C De Donno, L Hetzel, Y Ji, IL Ibarra, ...
Molecular Systems Biology, e11517, 2023
41*2023
Machine learning for perturbational single-cell omics
Y Ji, M Lotfollahi, FA Wolf, FJ Theis
Cell Systems 12 (6), 522-537, 2021
392021
An integrated cell atlas of the human lung in health and disease
L Sikkema, DC Strobl, L Zappia, E Madissoon, NS Markov, LE Zaragosi, ...
bioRxiv, 2022.03. 10.483747, 2022
332022
Learning interpretable latent autoencoder representations with annotations of feature sets
S Rybakov, M Lotfollahi, FJ Theis, FA Wolf
Machine Learning in Computational Biology (MLCB) meeting, 2020
232020
Multigrate: single-cell multi-omic data integration
M Lotfollahi, A Litinetskaya, F Theis
ICML 2021 Workshop on Computational Biology (WCB) Proceedings Paper, 2021
172021
Biologically informed deep learning to query gene programs in single-cell atlases
M Lotfollahi, S Rybakov, K Hrovatin, S Hediyeh-Zadeh, C Talavera-López, ...
Nature Cell Biology 25 (2), 337-350, 2023
14*2023
Predicting cellular responses to novel drug perturbations at a single-cell resolution
L Hetzel, S Boehm, N Kilbertus, S Günnemann, M Lotfollahi, F Theis
Advances in Neural Information Processing Systems 35, 26711-26722, 2022
7*2022
Deep Learning in Spatially Resolved Transcriptomics: A Comprehensive Technical View
RZ Nasab, MRE Ghamsari, A Argha, C Macphillamy, A Beheshti, ...
arXiv preprint arXiv:2210.04453, 2022
72022
Integrating T-cell receptor and transcriptome for large-scale single-cell immune profiling analysis
F Drost, Y An, LM Dratva, RGH Lindeboom, M Haniffa, SA Teichmann, ...
bioRxiv, 2021.06. 24.449733, 2021
7*2021
The scverse project provides a computational ecosystem for single-cell omics data analysis
I Virshup, D Bredikhin, L Heumos, G Palla, G Sturm, A Gayoso, I Kats, ...
Nature biotechnology, 1-3, 2023
52023
Best practices for single-cell analysis across modalities
L Heumos, AC Schaar, C Lance, A Litinetskaya, F Drost, L Zappia, ...
Nature Reviews Genetics, 1-23, 2023
52023
Single-cell reference mapping to construct and extend cell-type hierarchies
L Michielsen, M Lotfollahi, D Strobl, L Sikkema, MJT Reinders, FJ Theis, ...
bioRxiv, 2022.07. 07.499109, 2022
32022
Out-of-distribution prediction with disentangled representations for single-cell RNA sequencing data
M Lotfollahi, L Dony, H Agarwala, F Theis
ICML 2020 Workshop on Computational Biology (WCB) Proceedings Paper 37, 2020
32020
Deep generative modeling of transcriptional dynamics for RNA velocity analysis in single cells
A Gayoso, P Weiler, M Lotfollahi, D Klein, J Hong, AM Streets, FJ Theis, ...
bioRxiv, 2022.08. 12.503709, 2022
22022
The system can't perform the operation now. Try again later.
Articles 1–20