Dominic Zeng Wang
Dominic Zeng Wang
Zoox, Inc.
Verified email at zoox.com
Title
Cited by
Cited by
Year
Vote3deep: Fast object detection in 3d point clouds using efficient convolutional neural networks
M Engelcke, D Rao, DZ Wang, CH Tong, I Posner
2017 IEEE International Conference on Robotics and Automation (ICRA), 1355-1361, 2017
2562017
End-to-end tracking and semantic segmentation using recurrent neural networks
P Ondruska, J Dequaire, DZ Wang, I Posner
arXiv preprint arXiv:1604.05091, 2016
2112016
Voting for Voting in Online Point Cloud Object Detection.
DZ Wang, I Posner
Robotics: Science and Systems 1 (3), 2015
1972015
What could move? finding cars, pedestrians and bicyclists in 3d laser data
DZ Wang, I Posner, P Newman
2012 IEEE International Conference on Robotics and Automation (ICRA), 4038-4044, 2012
1002012
Model-free detection and tracking of dynamic objects with 2D lidar
DZ Wang, I Posner, P Newman
The International Journal of Robotics Research 34 (7), 1039-1063, 2015
722015
Deep tracking in the wild: End-to-end tracking using recurrent neural networks
J Dequaire, P Ondr˙ška, D Rao, D Wang, I Posner
The International Journal of Robotics Research 37 (4-5), 492-512, 2018
562018
Watch this: Scalable cost-function learning for path planning in urban environments
M Wulfmeier, DZ Wang, I Posner
2016 IEEE/RSJ International Conference on Intelligent Robots and Systemsá…, 2016
542016
Large-scale cost function learning for path planning using deep inverse reinforcement learning
M Wulfmeier, D Rao, DZ Wang, P Ondruska, I Posner
The International Journal of Robotics Research 36 (10), 1073-1087, 2017
452017
Deep tracking on the move: Learning to track the world from a moving vehicle using recurrent neural networks
J Dequaire, D Rao, P Ondruˇska, D Wang, I Posner
arXiv preprint arXiv:1609.09365, 2016
182016
A new approach to model-free tracking with 2D lidar
DZ Wang, I Posner, P Newman
Robotics Research, 557-573, 2016
102016
The system can't perform the operation now. Try again later.
Articles 1–10