Michael Arbel
Michael Arbel
Gatsby Computational Neuroscience Unit, UCL
Bestätigte E-Mail-Adresse bei ucl.ac.uk - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Demystifying mmd gans
M Bińkowski, DJ Sutherland, M Arbel, A Gretton
International Conference on Learning Representations, 2018
2282018
On gradient regularizers for MMD GANs
M Arbel, D Sutherland, M Bińkowski, A Gretton
Advances in neural information processing systems 31, 6700-6710, 2018
552018
Maximum mean discrepancy gradient flow
M Arbel, A Korba, A Salim, A Gretton
Advances in Neural Information Processing Systems, 6484-6494, 2019
202019
Efficient and principled score estimation with Nystr\" om kernel exponential families
DJ Sutherland, H Strathmann, M Arbel, A Gretton
Proceedings of the Twenty-First International Conference on Artificial …, 2018
19*2018
Kernel conditional exponential family
M Arbel, A Gretton
Proceedings of the Twenty-First International Conference on Artificial …, 2018
122018
Kernelized Wasserstein Natural Gradient
M Arbel, A Gretton, W Li, G Montúfar
arXiv preprint arXiv:1910.09652, 2019
42019
Generalized Energy Based Models
M Arbel, L Zhou, A Gretton
arXiv preprint arXiv:2003.05033, 2020
2*2020
Synchronizing Probability Measures on Rotations via Optimal Transport
T Birdal, M Arbel, U Simsekli, LJ Guibas
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
22020
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
A Korba, A Salim, M Arbel, G Luise, A Gretton
Advances in Neural Information Processing Systems 33, 2020
12020
Efficient Wasserstein Natural Gradients for Reinforcement Learning
T Moskovitz, M Arbel, F Huszar, A Gretton
arXiv preprint arXiv:2010.05380, 2020
2020
Estimating Barycenters of Measures in High Dimensions
S Cohen, M Arbel, MP Deisenroth
arXiv preprint arXiv:2007.07105, 2020
2020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–11