Data-free quantization through weight equalization and bias correction M Nagel, M Baalen, T Blankevoort, M Welling Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019 | 306 | 2019 |
Relaxed quantization for discretized neural networks C Louizos, M Reisser, T Blankevoort, E Gavves, M Welling arXiv preprint arXiv:1810.01875, 2018 | 152 | 2018 |
Up or down? adaptive rounding for post-training quantization M Nagel, RA Amjad, M Van Baalen, C Louizos, T Blankevoort International Conference on Machine Learning, 7197-7206, 2020 | 146 | 2020 |
Conditional channel gated networks for task-aware continual learning D Abati, J Tomczak, T Blankevoort, S Calderara, R Cucchiara, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020 | 107 | 2020 |
Lsq+: Improving low-bit quantization through learnable offsets and better initialization Y Bhalgat, J Lee, M Nagel, T Blankevoort, N Kwak Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020 | 94 | 2020 |
A white paper on neural network quantization M Nagel, M Fournarakis, RA Amjad, Y Bondarenko, M Van Baalen, ... arXiv preprint arXiv:2106.08295, 2021 | 74 | 2021 |
Batch-shaping for learning conditional channel gated networks BE Bejnordi, T Blankevoort, M Welling arXiv preprint arXiv:1907.06627, 2019 | 50 | 2019 |
Bayesian bits: Unifying quantization and pruning M Van Baalen, C Louizos, M Nagel, RA Amjad, Y Wang, T Blankevoort, ... Advances in neural information processing systems 33, 5741-5752, 2020 | 48 | 2020 |
Gradient Regularization for Quantization Robustness M Alizadeh, A Behboodi, M van Baalen, C Louizos, T Blankevoort, ... arXiv preprint arXiv:2002.07520, 2020 | 40 | 2020 |
Differentiable joint pruning and quantization for hardware efficiency Y Wang, Y Lu, T Blankevoort Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020 | 31 | 2020 |
Distilling optimal neural networks: Rapid search in diverse spaces B Moons, P Noorzad, A Skliar, G Mariani, D Mehta, C Lott, T Blankevoort Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 26 | 2021 |
Learned threshold pruning K Azarian, Y Bhalgat, J Lee, T Blankevoort arXiv preprint arXiv:2003.00075, 2020 | 21 | 2020 |
Taxonomy and evaluation of structured compression of convolutional neural networks A Kuzmin, M Nagel, S Pitre, S Pendyam, T Blankevoort, M Welling arXiv preprint arXiv:1912.09802, 2019 | 17 | 2019 |
Understanding and overcoming the challenges of efficient transformer quantization Y Bondarenko, M Nagel, T Blankevoort arXiv preprint arXiv:2109.12948, 2021 | 16 | 2021 |
Continuous relaxation of quantization for discretized deep neural networks C Louizos, M Reisser, TPF Blankevoort, M Welling US Patent App. 16/413,535, 2019 | 9 | 2019 |
Overcoming oscillations in quantization-aware training M Nagel, M Fournarakis, Y Bondarenko, T Blankevoort International Conference on Machine Learning, 16318-16330, 2022 | 8 | 2022 |
Neural network quantization with ai model efficiency toolkit (aimet) S Siddegowda, M Fournarakis, M Nagel, T Blankevoort, C Patel, ... arXiv preprint arXiv:2201.08442, 2022 | 3 | 2022 |
Simulated quantization, real power savings M van Baalen, B Kahne, E Mahurin, A Kuzmin, A Skliar, M Nagel, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 2 | 2022 |
Conditional Computation For Continual Learning D Abati, BE Bejnordi, JM Tomczak, TPF Blankevoort US Patent App. 17/097,811, 2021 | 2 | 2021 |
Joint pruning and quantization scheme for deep neural networks Y Lu, Y Wang, TPF Blankevoort, C Louizos, M Reisser, J Hou US Patent App. 17/030,315, 2021 | 2 | 2021 |