Follow
Jan-Matthis Lueckmann
Jan-Matthis Lueckmann
Google
Verified email at jan-matthis.de - Homepage
Title
Cited by
Cited by
Year
Flexible statistical inference for mechanistic models of neural dynamics
JM Lueckmann, PJ Goncalves, G Bassetto, K Öcal, M Nonnenmacher, ...
Advances in neural information processing systems 30, 2017
1642017
Ostracism Online: A social media ostracism paradigm
W Wolf, A Levordashka, JR Ruff, S Kraaijeveld, JM Lueckmann, ...
Behavior Research Methods 47, 361-373, 2015
1592015
Training deep neural density estimators to identify mechanistic models of neural dynamics
PJ Gonçalves, JM Lueckmann, M Deistler, M Nonnenmacher, K Öcal, ...
Elife 9, e56261, 2020
1112020
SBI--A toolkit for simulation-based inference
A Tejero-Cantero, J Boelts, M Deistler, JM Lueckmann, C Durkan, ...
arXiv preprint arXiv:2007.09114, 2020
1112020
Likelihood-free inference with emulator networks
JM Lueckmann, G Bassetto, T Karaletsos, JH Macke
Proceedings of Machine Learning Research 96, 32–53, 2019
952019
Benchmarking Simulation-Based Inference
JM Lueckmann, J Boelts, DS Greenberg, PJ Gonçalves, JH Macke
Proceedings of The 24th International Conference on Artificial Intelligence …, 2021
852021
p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury
EM Floriddia, KI Rathore, A Tedeschi, G Quadrato, A Wuttke, ...
Journal of Neuroscience 32 (40), 13956-13970, 2012
552012
Can serial dependencies in choices and neural activity explain choice probabilities?
JM Lueckmann, JH Macke, H Nienborg
Journal of Neuroscience 38 (14), 3495-3506, 2018
372018
Pre-stimulus phase and amplitude regulation of phase-locked responses are maximized in the critical state
AE Avramiea, R Hardstone, JM Lueckmann, J Bím, HD Mansvelder, ...
Elife 9, e53016, 2020
152020
Flexible and efficient simulation-based inference for models of decision-making
J Boelts, JM Lueckmann, R Gao, JH Macke
Elife 11, e77220, 2022
142022
Spatiotemporal dynamics of random stimuli account for trial-to-trial variability in perceptual decision making
H Park, JM Lueckmann, K von Kriegstein, S Bitzer, SJ Kiebel
Scientific reports 6 (1), 1-17, 2016
142016
Training deep neural density estimators to identify mechanistic models of neural dynamics. bioRxiv
PJ Gonçalves, JM Lueckmann, M Deistler, M Nonnenmacher, K Öcal, ...
122019
Advances in Neural Information Processing Systems
JM Lueckmann, PJ Goncalves, G Bassetto, K Öcal, M Nonnenmacher, ...
Curran Associates, 30, 1289-1299, 2017
72017
GATSBI: Generative adversarial training for simulation-based inference
P Ramesh, JM Lueckmann, J Boelts, Á Tejero-Cantero, DS Greenberg, ...
arXiv preprint arXiv:2203.06481, 2022
62022
Likelihood-free inference with emulator networks. arXiv e-prints
JM Lueckmann, G Bassetto, T Karaletsos, JH Macke
arXiv preprint arXiv:1805.09294, 2018
62018
Flexible statistical inference for mechanistic models of neural dynamics. arXiv
JM Lueckmann, PJ Goncalves, G Bassetto, K Ocal, M Nonnenmacher, ...
arXiv preprint arXiv:1711.01861, 2017
52017
Comparing neural simulations by neural density estimation
J Boelts, JM Lueckmann, PJ Goncalves, H Sprekeler, JH Macke
2019 Conference on Cognitive Computational Neuroscience, 1289-1299, 0
4
Statistical inference for analyzing sloppiness in neuroscience models
M Deistler, GJ Pedro, JM Lueckmann, K Oecal, DS Greenberg, JH Macke
Bernstein Conference 2019, Berlin, Germany, 2019
32019
Robust statistical inference for simulation-based models in neuroscience
M Nonnenmacher, PJ Goncalves, G Bassetto, JM Lueckmann, JH Macke
Bernstein Conference 2018, Berlin, Germany, 2018
32018
Amortised inference for mechanistic models of neural dynamics
JM Lueckmann, PJ Gonçalves, C Chintaluri, WF Podlaski, G Bassetto, ...
Computational and Systems Neuroscience (Cosyne) 2019, 108, 2019
12019
The system can't perform the operation now. Try again later.
Articles 1–20