Phd. Ronal Muresano
Phd. Ronal Muresano
ForwardKeys
Verified email at forwardkeys.com - Homepage
Title
Cited by
Cited by
Year
Methodology for efficient execution of spmd applications on multicore environments
R Muresano, D Rexachs, E Luque
Procc of the 2010 10th IEEE/ACM Int Conf on Cluster, Cloud and Grid Comp …, 2010
172010
Learning parallel programming: a challenge for university students
R Muresano, D Rexachs, E Luque
Procedia Computer Science (ISSN: 1877-0509) 1 (1), 875-883, 2010
162010
How SPMD applications could be efficiently executed on Multicore Environments?
R Muresano, D Rexachs, E Luque
IEEE Int Conf on Cluster Computing and Workshops, 2009. ISBN 978-1-4244-5011 …, 2009
132009
Hybrid Message Pessimistic Logging. Improving current pessimistic message logging protocols
H Meyer, R Muresano, M Castro-León, D Rexachs, E Luque
Journal of Parallel and Distributed Computing 104, 206-222, 2017
102017
Methodology for predicting the energy consumption of SPMD application on virtualized environments
J Balladini, R Muresano, R Suppi, D Rexachs, E Luque
Journal of Computer Science & Technology (ISSN 1666-6038) 13 (3), 130-136, 2013
82013
Combining scalability and efficiency for spmd applications on multicore clusters
R Muresano, D Rexachs, E Luque
Proceedings of the International Conference on Parallel and Distributed …, 2011
72011
A tool for efficient execution of SPMD applications on multicore clusters
R Muresano, D Rexachs, E Luque
Procedia Computer Science (ISSN: 1877-0509) 1 (1), 2599-2608, 2010
72010
Dragonfly: A multi-platform parallel toolbox for MATLAB/Octave
I Azzini, R Muresano, M Ratto
Computer Languages, Systems & Structures 52, 21-42, 2018
42018
Adapting and optimizing the systemic model of banking originated losses (symbol) tool to the multi-core architecture
R Muresano, A Pagano
Computational Economics 48 (2), 253-280, 2016
32016
Teaching model for computational science and engineering programme
H Stainsby, R Muresano, L Fialho, JC Gonzalez, D Rexachs, E Luque
International Conference on Computational Science, 34-43, 2009
32009
An approach for an efficient execution of SPMD applications on Multi-core environments
R Muresano, H Meyer, D Rexachs, E Luque
Future Generation Computer Systems 66, 11-26, 2017
22017
Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore
R Muresano, A Pagano
International Journal of Social, Management, Economics and Business …, 2014
22014
Tuning SPMD Applications in Order to Increase Performability
H Meyer, R Muresano, D Rexachs, E Luque
Trust, Security and Privacy in Comp and Comm (TrustCom)(ISBN:978-0-7695-5022 …, 2013
22013
A Framework to write Performability-Aware SPMD Applications
H Meyer, R Muresano, D Rexachs, E Luque
The 2011 International Conference on Parallel and Distributed Processing …, 2013
12013
A method for scaling SPMD applications on Multicore Clusters
R Muresano, D Rexachs, E Luque
Proceedings of the 2012 International Conference on Parallel and Distributed …, 2012
12012
An Approach for Efficient Execution of SPMD Applications on Multicore Clusters
R Muresano, D Rexachs, E Luque
Programming Multicore and Many-core Computing Systems, 2017
2017
Migration of tools and methodologies for performance prediction and efficient HPC on cloud environments: Results and conclusion
R Muresano, A Wong, D Rexachs, E Luque
Journal of Computer Science & Technology (ISSN 1666-6038) 13 (3), 123-129, 2013
2013
Metodología para la ejecución eficiente de aplicaciones SPMD en clústeres con procesadores multicore
RR Muresano Cáceres
Universitat Autònoma de Barcelona,, 2013
2013
A case of study for learning to design SPMD applications efficiently on multicore cluster
R Muresano, D Rexachs, E Luque
The 2013 International Conference on Foundations of Computer Science (FCS), 2012
2012
An assessment of multi-core for a performance prediction model of tomographic reconstruction
P Fritzsche, R Muresano, D Rexachs, E Luque
2009 IEEE International Conference on Cluster Computing and Workshops, 1-4, 2009
2009
The system can't perform the operation now. Try again later.
Articles 1–20