Follow
Thomas Küstner
Thomas Küstner
University Hospital of Tübingen
Verified email at uni-tuebingen.de - Homepage
Title
Cited by
Cited by
Year
MedGAN: Medical image translation using GANs
K Armanious, C Jiang, M Fischer, T Küstner, T Hepp, K Nikolaou, ...
Computerized medical imaging and graphics 79, 101684, 2020
6312020
CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions
T Küstner, N Fuin, K Hammernik, A Bustin, H Qi, R Hajhosseiny, PG Masci, ...
Scientific Reports 10, 13710, 2020
1992020
A whole-body FDG-PET/CT Dataset with manually annotated Tumor Lesions
S Gatidis, T Hepp, M Früh, C La Fougère, K Nikolaou, C Pfannenberg, ...
Scientific Data 9 (1), 1-7, 2022
1562022
Retrospective correction of motion‐affected MR images using deep learning frameworks
T Küstner, K Armanious, J Yang, B Yang, F Schick, S Gatidis
Magnetic resonance in medicine 82 (4), 1527-1540, 2019
1422019
Unsupervised Medical Image Translation Using Cycle-MedGAN
K Armanious, C Jiang, S Abdulatif, T Küstner, S Gatidis, B Yang
European Association for Signal Processing (EUSIPCO), 2019
1282019
Automated reference-free detection of motion artifacts in magnetic resonance images
T Küstner, A Liebgott, L Mauch, P Martirosian, F Bamberg, K Nikolaou, ...
Magnetic Resonance Materials in Physics, Biology and Medicine 31, 243-256, 2018
1082018
MR-based respiratory and cardiac motion correction for PET imaging
T Küstner, M Schwartz, P Martirosian, S Gatidis, F Seith, C Gilliam, T Blu, ...
Medical Image Analysis, 2017
842017
A machine-learning framework for automatic reference-free quality assessment in MRI
T Küstner, S Gatidis, A Liebgott, M Schwartz, L Mauch, P Martirosian, ...
Magnetic resonance imaging 53, 134-147, 2018
702018
Deep learning applications in magnetic resonance imaging: has the future become present?
S Gassenmaier, T Küstner, D Nickel, J Herrmann, R Hoffmann, ...
Diagnostics 11 (12), 2181, 2021
662021
Independent attenuation correction of whole body [18F]FDG-PET using a deep learning approach with Generative Adversarial Networks
K Armanious, T Hepp, T Küstner, H Dittmann, K Nikolaou, C La Fougère, ...
EJNMMI research 10, 1-9, 2020
662020
Simultaneous multislice diffusion‐weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences
J Taron, P Martirosian, M Erb, T Kuestner, NF Schwenzer, H Schmidt, ...
Journal of Magnetic Resonance Imaging 44 (4), 865-879, 2016
662016
Feasibility and implementation of a deep learning MR reconstruction for TSE sequences in musculoskeletal imaging
J Herrmann, G Koerzdoerfer, D Nickel, M Mostapha, M Nadar, ...
Diagnostics 11 (8), 1484, 2021
592021
MR image reconstruction using a combination of compressed sensing and partial Fourier acquisition: ESPReSSo
T Küstner, C Würslin, S Gatidis, P Martirosian, K Nikolaou, NF Schwenzer, ...
IEEE transactions on medical imaging 35 (11), 2447-2458, 2016
592016
Deep-learning based super-resolution for 3D isotropic coronary MR angiography in less than a minute
T Küstner, CM Escobar, A Psenicny, A Bustin, N Fuin, H Qi, R Neji, ...
Magnetic Resonance in Medicine, 2021
562021
A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography
N Fuin, A Bustin, T Küstner, I Oksuz, J Clough, AP King, JA Schnabel, ...
Magnetic resonance imaging 70, 155-167, 2020
512020
Deep learning‐based automated abdominal organ segmentation in the UK Biobank and German National Cohort Magnetic Resonance Imaging Studies
T Kart, M Fischer, T Küstner, T Hepp, F Bamberg, S Winzeck, B Glocker, ...
Investigative Radiology 56 (6), 401-408, 2021
502021
Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging
K Hammernik, T Küstner, B Yaman, Z Huang, D Rueckert, F Knoll, ...
IEEE signal processing magazine 40 (1), 98-114, 2023
442023
Cardiac MR: from theory to practice
TF Ismail, W Strugnell, C Coletti, M Božić-Iven, S Weingaertner, ...
Frontiers in cardiovascular medicine 9, 826283, 2022
442022
Fully automated and standardized segmentation of adipose tissue compartments via deep learning in 3D whole-body MRI of epidemiologic cohort studies
T Küstner, T Hepp, M Fischer, M Schwartz, A Fritsche, HU Häring, ...
Radiology: Artificial Intelligence 2 (6), e200010, 2020
442020
Acceleration of magnetic resonance cholangiopancreatography using compressed sensing at 1.5 and 3 T: a clinical feasibility study
J Taron, J Weiss, M Notohamiprodjo, T Kuestner, F Bamberg, E Weiland, ...
Investigative radiology 53 (11), 681-688, 2018
442018
The system can't perform the operation now. Try again later.
Articles 1–20