Folgen
Mark van der Wilk
Titel
Zitiert von
Zitiert von
Jahr
GPflow: A Gaussian process library using TensorFlow
AGG Matthews, M van der Wilk, T Nickson, K Fujii, A Boukouvalas, ...
Journal of Machine Learning Research 18 (1), 1299-1304, 2017
458*2017
Concrete problems for autonomous vehicle safety: Advantages of Bayesian deep learning
R McAllister, Y Gal, A Kendall, M van der Wilk, A Shah, R Cipolla, ...
International Joint Conferences on Artificial Intelligence, Inc., 2017
251*2017
Understanding probabilistic sparse Gaussian process approximations
M Bauer, M van der Wilk, CE Rasmussen
Advances in neural information processing systems 29, 2016
2152016
Distributed variational inference in sparse Gaussian process regression and latent variable models
Y Gal*, M van der Wilk*, CE Rasmussen
Advances in Neural Information Processing Systems, 3257-3265, 2014
1762014
Convolutional Gaussian Processes
M van der Wilk, CE Rasmussen, J Hensman
Advances in Neural Information Processing Systems, 2845-2854, 2017
1152017
Rates of Convergence for Sparse Variational Gaussian Process Regression
DR Burt, CE Rasmussen, M van der Wilk
Proceedings of the 36th International Conference on Machine Learning (ICML 2019), 2019
1132019
Bayesian layers: A module for neural network uncertainty
D Tran, M Dusenberry, M van der Wilk, D Hafner
Advances in neural information processing systems 32, 2019
862019
Learning invariances using the marginal likelihood
M van der Wilk, M Bauer, ST John, J Hensman
Advances in Neural Information Processing Systems 31, 9938-9948, 2018
492018
A framework for interdomain and multioutput Gaussian processes
M van der Wilk, V Dutordoir, ST John, A Artemev, V Adam, J Hensman
arXiv preprint arXiv:2003.01115, 2020
482020
Bayesian neural network priors revisited
V Fortuin, A Garriga-Alonso, F Wenzel, G Rätsch, R Turner, ...
arXiv preprint arXiv:2102.06571, 2021
442021
Stochastic segmentation networks: Modelling spatially correlated aleatoric uncertainty
M Monteiro, LL Folgoc, DC de Castro, N Pawlowski, B Marques, ...
Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020
332020
The promises and pitfalls of deep kernel learning
SW Ober, CE Rasmussen, M van der Wilk
Uncertainty in Artificial Intelligence, 1206-1216, 2021
302021
Bayesian Image Classification with Deep Convolutional Gaussian Processes
V Dutordoir, M van der Wilk, A Artemev, J Hensman
International Conference on Artificial Intelligence and Statistics (AISTATS …, 2020
30*2020
On the benefits of invariance in neural networks
C Lyle, M van der Wilk, M Kwiatkowska, Y Gal, B Bloem-Reddy
arXiv preprint arXiv:2005.00178, 2020
302020
Convergence of Sparse Variational Inference in Gaussian Processes Regression
DR Burt, CE Rasmussen, M van der Wilk
Journal of Machine Learning Research 21, 1-63, 2020
242020
Understanding variational inference in function-space
DR Burt, SW Ober, A Garriga-Alonso, M van der Wilk
arXiv preprint arXiv:2011.09421, 2020
222020
Overcoming mean-field approximations in recurrent Gaussian process models
AD Ialongo, M Van Der Wilk, J Hensman, CE Rasmussen
Proceedings of the 36th International Conference on Machine Learning (ICML 2019), 2019
22*2019
Speedy Performance Estimation for Neural Architecture Search
R Ru, C Lyle, L Schut, M Fil, M van der Wilk, Y Gal
Advances in Neural Information Processing Systems 34, 4079-4092, 2021
17*2021
Sparse Gaussian process approximations and applications
M van der Wilk
University of Cambridge, 2019
172019
A bayesian perspective on training speed and model selection
C Lyle, L Schut, R Ru, Y Gal, M van der Wilk
Advances in Neural Information Processing Systems 33, 10396-10408, 2020
152020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20