Folgen
Felix Mohr
Felix Mohr
Bestätigte E-Mail-Adresse bei unisabana.edu.co
Titel
Zitiert von
Zitiert von
Jahr
ML-Plan: Automated machine learning via hierarchical planning
F Mohr, M Wever, E Hüllermeier
Machine Learning 107, 1495-1515, 2018
2462018
AutoML for multi-label classification: Overview and empirical evaluation
M Wever, A Tornede, F Mohr, E Hüllermeier
IEEE transactions on pattern analysis and machine intelligence 43 (9), 3037-3054, 2021
812021
Learning Curves for Decision Making in Supervised Machine Learning - A Survey
F Mohr, JN van Rijn
arXiv preprint arXiv:2201.12150, 2022
682022
Towards green automated machine learning: Status quo and future directions
T Tornede, A Tornede, J Hanselle, F Mohr, M Wever, E Hüllermeier
Journal of Artificial Intelligence Research 77, 427-457, 2023
472023
Predicting machine learning pipeline runtimes in the context of automated machine learning
F Mohr, M Wever, A Tornede, E Hüllermeier
IEEE Transactions on Pattern Analysis and Machine Intelligence 43 (9), 3055-3066, 2021
392021
Meta-album: Multi-domain meta-dataset for few-shot image classification
I Ullah, D Carrión-Ojeda, S Escalera, I Guyon, M Huisman, F Mohr, ...
Advances in Neural Information Processing Systems 35, 3232-3247, 2022
372022
Fast and informative model selection using learning curve cross-validation
F Mohr, JN van Rijn
IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (8), 9669-9680, 2023
352023
Ml-plan for unlimited-length machine learning pipelines
MD Wever, F Mohr, E Hüllermeier
ICML 2018 AutoML Workshop, 2018
302018
LCDB 1.0: An extensive learning curves database for classification tasks
F Mohr, TJ Viering, M Loog, JN van Rijn
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2022
222022
Automl for predictive maintenance: One tool to rul them all
T Tornede, A Tornede, M Wever, F Mohr, E Hüllermeier
IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile …, 2020
212020
Run2Survive: A decision-theoretic approach to algorithm selection based on survival analysis
A Tornede, M Wever, S Werner, F Mohr, E Hüllermeier
Asian Conference on Machine Learning, 737-752, 2020
182020
Towards model selection using learning curve cross-validation
F Mohr, JN van Rijn
8th ICML Workshop on automated machine learning (AutoML), 2021
172021
Automated online service composition
F Mohr, A Jungmann, HK Büning
2015 IEEE International Conference on Services Computing, 57-64, 2015
172015
Automated multi-label classification based on ML-Plan
M Wever, F Mohr, E Hüllermeier
arXiv preprint arXiv:1811.04060, 2018
162018
Lessons learned from the NeurIPS 2021 MetaDL challenge: Backbone fine-tuning without episodic meta-learning dominates for few-shot learning image classification
A El Baz, I Ullah, E Alcobaça, AC Carvalho, H Chen, F Ferreira, H Gouk, ...
NeurIPS 2021 Competitions and Demonstrations Track, 80-96, 2022
142022
Automating multi-label classification extending ml-plan
MD Wever, F Mohr, A Tornede, E Hüllermeier
142019
Naive automated machine learning
F Mohr, M Wever
Machine Learning 112 (4), 1131-1170, 2023
122023
Automated machine learning service composition
F Mohr, M Wever, E Hüllermeier
arXiv preprint arXiv:1809.00486, 2018
122018
An approach towards adaptive service composition in markets of composed services
A Jungmann, F Mohr
Journal of Internet Services and Applications 6, 1-18, 2015
122015
The bigger fish: a comparison of meta-learning qsar models on low-resourced aquatic toxicity regression tasks
T Schlender, M Viljanen, JN van Rijn, F Mohr, WJGM Peijnenburg, ...
Environmental Science & Technology 57 (46), 17818-17830, 2023
112023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20