The scalar auxiliary variable (SAV) approach for gradient flows J Shen, J Xu, J Yang Journal of Computational Physics 353, 407-416, 2018 | 272 | 2018 |

A new class of efficient and robust energy stable schemes for gradient flows J Shen, J Xu, J Yang SIAM Review 61 (3), 474-506, 2019 | 163 | 2019 |

NONLINEAR STABILITY OF THE IMPLICIT-EXPLICIT METHODS FOR THE ALLEN-CAHN EQUATION. X Feng, H Song, T Tang, J Yang Inverse Problems & Imaging 7 (3), 2013 | 71 | 2013 |

Long Time Numerical Simulations for Phase-Field Problems Using -Adaptive Spectral Deferred Correction Methods X Feng, T Tang, J Yang SIAM Journal on Scientific Computing 37 (1), A271-A294, 2015 | 69 | 2015 |

On the maximum principle preserving schemes for the generalized Allen–Cahn equation J Shen, T Tang, J Yang Communications in Mathematical Sciences 14 (6), 1517-1534, 2016 | 68 | 2016 |

Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen–Cahn equations T Hou, T Tang, J Yang Journal of Scientific Computing 72 (3), 1214-1231, 2017 | 63 | 2017 |

Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models X Feng, T Tang, J Yang East Asian Journal on Applied Mathematics 3 (1), 59-80, 2013 | 63 | 2013 |

Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle T Tang, J Yang Journal of Computational Mathematics 34 (5), 451, 2016 | 52 | 2016 |

Asymptotically compatible Fourier spectral approximations of nonlocal Allen--Cahn equations Q Du, J Yang SIAM Journal on Numerical Analysis 54 (3), 1899-1919, 2016 | 36 | 2016 |

Analysis of a nonlocal-in-time parabolic equation Q Du, J Yang, Z Zhou Discrete & Continuous Dynamical Systems-B 22 (2), 339, 2017 | 33 | 2017 |

Time-fractional Allen–Cahn equations: analysis and numerical methods Q Du, J Yang, Z Zhou Journal of Scientific Computing 85 (2), 1-30, 2020 | 26 | 2020 |

Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications Q Du, J Yang Journal of Computational Physics 332, 118-134, 2017 | 22 | 2017 |

Robust a posteriori stress analysis for quadrature collocation approximations of nonlocal models via nonlocal gradients Q Du, Y Tao, X Tian, J Yang Computer Methods in Applied Mechanics and Engineering 310, 605-627, 2016 | 21 | 2016 |

Artificial boundary conditions for nonlocal heat equations on unbounded domain W Zhang, J Yang, J Zhang, Q Du Communications in Computational Physics 21 (1), 16-39, 2017 | 17 | 2017 |

UNIFORM L^{p}-BOUND OF THE ALLEN-CAHN EQUATION AND ITS NUMERICAL DISCRETIZATION.J Yang, Q Du, W Zhang International Journal of Numerical Analysis & Modeling 15, 2018 | 15 | 2018 |

Asymptotically compatible discretization of multidimensional nonlocal diffusion models and approximation of nonlocal Green’s functions Q Du, Y Tao, X Tian, J Yang IMA Journal of Numerical Analysis 39 (2), 607-625, 2019 | 11 | 2019 |

Maximum bound principle preserving integrating factor Runge–Kutta methods for semilinear parabolic equations L Ju, X Li, Z Qiao, J Yang Journal of Computational Physics, 110405, 2021 | 5 | 2021 |

How to Define Dissipation-Preserving Energy for Time-Fractional Phase-Field Equations C Quan, T Tang, J Yang arXiv preprint arXiv:2007.14855, 2020 | 4 | 2020 |

Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations B Li, J Yang, Z Zhou SIAM Journal on Scientific Computing 42 (6), A3957-A3978, 2020 | 4 | 2020 |

Computing the maximal eigenpairs of large size tridiagonal matrices with O (1) number of iterations T Tang, J Yang Numer Math Theory Methods Appl 11 (4), 877-894, 2018 | 3 | 2018 |