Folgen
Johannes Haug
Johannes Haug
Data Scientist at Bosch Center for Artificial Intelligence, previously at University of Tuebingen
Bestätigte E-Mail-Adresse bei uni-tuebingen.de
Titel
Zitiert von
Zitiert von
Jahr
Deep neural networks and tabular data: A survey
V Borisov, T Leemann, K Seßler, J Haug, M Pawelczyk, G Kasneci
IEEE transactions on neural networks and learning systems, 2022
6712022
A wearable sensor system for lameness detection in dairy cattle
J Haladjian, J Haug, S Nüske, B Bruegge
Multimodal Technologies and Interaction 2 (2), 27, 2018
712018
CancelOut: A Layer for Feature Selection in Deep Neural Networks
V Borisov, J Haug, G Kasneci
Artificial Neural Networks and Machine Learning–ICANN 2019: Deep Learning …, 2019
582019
Learning parameter distributions to detect concept drift in data streams
J Haug, G Kasneci
2020 25th international conference on pattern recognition (ICPR), 9452-9459, 2021
342021
On baselines for local feature attributions
J Haug, S Zürn, P El-Jiz, G Kasneci
arXiv preprint arXiv:2101.00905, 2021
302021
TüEyeQ, a rich IQ test performance data set with eye movement, educational and socio-demographic information
E Kasneci, G Kasneci, T Appel, J Haug, F Wortha, M Tibus, U Trautwein, ...
Scientific Data 8 (1), 154, 2021
152021
Leveraging model inherent variable importance for stable online feature selection
J Haug, M Pawelczyk, K Broelemann, G Kasneci
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge …, 2020
142020
Change detection for local explainability in evolving data streams
J Haug, A Braun, S Zürn, G Kasneci
Proceedings of the 31st ACM International Conference on Information …, 2022
112022
Towards user empowerment
M Pawelczyk, J Haug, K Broelemann, G Kasneci
arXiv preprint arXiv:1910.09398, 2019
72019
Dynamic model tree for interpretable data stream learning
J Haug, K Broelemann, G Kasneci
2022 IEEE 38th International Conference on Data Engineering (ICDE), 2562-2574, 2022
62022
Standardized Evaluation of Machine Learning Methods for Evolving Data Streams
J Haug, E Tramountani, G Kasneci
arXiv preprint arXiv:2204.13625, 2022
32022
Towards Reliable Machine Learning in Evolving Data Streams
JC Haug
Universität Tübingen, 2022
12022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–12