Adaptive stochastic galerkin fem M Eigel, CJ Gittelson, C Schwab, E Zander Computer Methods in Applied Mechanics and Engineering 270, 247-269, 2014 | 146 | 2014 |
Solving stochastic systems with low-rank tensor compression HG Matthies, E Zander Linear Algebra and its Applications 436 (10), 3819-3838, 2012 | 96 | 2012 |
Efficient analysis of high dimensional data in tensor formats M Espig, W Hackbusch, A Litvinenko, HG Matthies, E Zander Sparse grids and applications, 31-56, 2013 | 75 | 2013 |
Inverse problems in a Bayesian setting HG Matthies, E Zander, BV Rosić, A Litvinenko, O Pajonk Computational Methods for Solids and Fluids: Multiscale Analysis …, 2016 | 72 | 2016 |
A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes M Eigel, CJ Gittelson, C Schwab, E Zander ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation …, 2015 | 72 | 2015 |
Parameter estimation via conditional expectation: a Bayesian inversion HG Matthies, E Zander, BV Rosić, A Litvinenko Advanced modeling and simulation in engineering sciences 3 (1), 1-21, 2016 | 54 | 2016 |
Parametric and uncertainty computations with tensor product representations HG Matthies, A Litvinenko, O Pajonk, BV Rosić, E Zander Uncertainty Quantification in Scientific Computing: 10th IFIP WG 2.5 Working …, 2012 | 42 | 2012 |
Alea-a python framework for spectral methods and low-rank approximations in uncertainty quantification M Eigel, E Zander Low rank surrogates for polymorphic fields 33, 2020 | 19 | 2020 |
Bayesian parameter estimation via filtering and functional approximations HG Matthies, A Litvinenko, BV Rosic, E Zander arXiv preprint arXiv:1611.09293, 2016 | 15 | 2016 |
Tensor approximation methods for stochastic problems EK Zander Dissertation, Braunschweig, Technische Universität Braunschweig, 2012, 2013 | 14 | 2013 |
Tensor product methods for stochastic problems E Zander, HG Matthies PAMM: Proceedings in Applied Mathematics and Mechanics 7 (1), 2040067-2040068, 2007 | 11 | 2007 |
Iterative algorithms for the post-processing of high-dimensional data M Espig, W Hackbusch, A Litvinenko, HG Matthies, E Zander Journal of Computational Physics 410, 109396, 2020 | 8 | 2020 |
Post-processing of high-dimensional data M Espig, W Hackbusch, A Litvinenko, HG Matthies, E Zander arXiv preprint arXiv:1906.05669, 2019 | 8* | 2019 |
Sparse representations in stochastic mechanics HG Matthies, E Zander Computational Methods in Stochastic Dynamics, 247-265, 2010 | 7 | 2010 |
Stochastic galerkin library E Zander Technische Universität Braunschweig, 2008 | 7 | 2008 |
A worked-out example of surrogate-based bayesian parameter and field identification methods N Friedman, C Zoccarato, E Zander, HG Matthies CRC Press, 2021 | 5 | 2021 |
Bayesian calibration of model coefficients for a simulation of flow over porous material involving SVM classification N Friedman, P Kumar, E Zander, HG Matthies PAMM 16 (1), 669-670, 2016 | 5 | 2016 |
Calibration of an extended eddy viscosity turbulence model using uncertainty quantification G Subbian, AC Botelho e Souza, R Radespiel, E Zander, N Friedman, ... AIAA Scitech 2020 Forum, 1031, 2020 | 4 | 2020 |
Bayesian calibration of volume averaged RANS model parameters for turbulent flow simulations over porous materials P Kumar, N Friedman, E Zander, R Radespiel New Results in Numerical and Experimental Fluid Mechanics XI: Contributions …, 2018 | 4 | 2018 |
Inverse problems in a Bayesian setting, Computational Methods for Solids and Fluids Multiscale Analysis, Probability Aspects and Model Reduction Editors: Ibrahimbegovic, Adnan … H Matthies, E Zander, O Pajonk, B Rosic, A Litvinenko Springer, 2016 | 4 | 2016 |