Folgen
Konrad Heidler
Konrad Heidler
Bestätigte E-Mail-Adresse bei tum.de - Startseite
Titel
Zitiert von
Zitiert von
Jahr
HED-UNet: Combined segmentation and edge detection for monitoring the Antarctic coastline
K Heidler, L Mou, C Baumhoer, A Dietz, XX Zhu
IEEE transactions on geoscience and remote sensing 60, 1-14, 2021
1282021
Developing and testing a deep learning approach for mapping retrogressive thaw slumps
I Nitze, K Heidler, S Barth, G Grosse
Remote Sensing 13 (21), 4294, 2021
412021
Self-supervised audiovisual representation learning for remote sensing data
K Heidler, L Mou, D Hu, P Jin, G Li, C Gan, JR Wen, XX Zhu
International Journal of Applied Earth Observation and Geoinformation 116 …, 2023
402023
Extracting glacier calving fronts by deep learning: The benefit of multispectral, topographic, and textural input features
E Loebel, M Scheinert, M Horwath, K Heidler, J Christmann, LD Phan, ...
IEEE Transactions on Geoscience and Remote Sensing 60, 1-12, 2022
182022
Aerial scene understanding in the wild: Multi-scene recognition via prototype-based memory networks
Y Hua, L Mou, J Lin, K Heidler, XX Zhu
ISPRS Journal of Photogrammetry and Remote Sensing 177, 89-102, 2021
162021
DDM-Former: Transformer networks for GNSS reflectometry global ocean wind speed estimation
D Zhao, K Heidler, M Asgarimehr, C Arnold, T Xiao, J Wickert, XX Zhu, ...
Remote Sensing of Environment 294, 113629, 2023
152023
IceLines–A new data set of Antarctic ice shelf front positions
CA Baumhoer, AJ Dietz, K Heidler, C Kuenzer
Scientific Data 10 (1), 138, 2023
12*2023
On the Foundations of Earth and Climate Foundation Models
XX Zhu, Z Xiong, Y Wang, AJ Stewart, K Heidler, Y Wang, Z Yuan, ...
arXiv preprint arXiv:2405.04285, 2024
92024
A deep active contour model for delineating glacier calving fronts
K Heidler, L Mou, E Loebel, M Scheinert, S Lefèvre, XX Zhu
IEEE Transactions on Geoscience and Remote Sensing, 2023
92023
Calving front monitoring at sub-seasonal resolution: a deep learning application to Greenland glaciers
E Loebel, M Scheinert, M Horwath, A Humbert, J Sohn, K Heidler, ...
The Cryosphere Discussions 2023, 1-21, 2023
72023
Seeing the bigger picture: Enabling large context windows in neural networks by combining multiple zoom levels
K Heidler, L Mou, XX Zhu
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 3033 …, 2021
42021
Remote sensing for assessing drought insurance claims in central europe
K Heidler, A Fietzke
IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium …, 2019
32019
A high-resolution calving front data product for marine-terminating glaciers in Svalbard
T Li, K Heidler, L Mou, Á Ignéczi, XX Zhu, JL Bamber
Earth System Science Data Discussions 2023, 1-28, 2023
22023
PixelDINO: Semi-Supervised Semantic Segmentation for Detecting Permafrost Disturbances in the Arctic
K Heidler, I Nitze, G Grosse, XX Zhu
IEEE Transactions on Geoscience and Remote Sensing, 2024
12024
Towards a Deep-Learning based Inventory of Retrogressive Thaw Slumps across the Arctic
I Nitze, K Heidler, S Barth, G Grosse, P Bernhard
AGU Fall Meeting Abstracts 2022, C52B-01, 2022
12022
Evaluating a deep-learning approach for mapping retrogressive thaw slumps across the arctic
I Nitze, K Heidler, S Barth, A Targowicka, G Grosse
AGU Fall Meeting Abstracts 2021, B51B-05, 2021
12021
Multi-Sensor Deep Learning for Glacier Mapping
CA Diaconu, K Heidler, JL Bamber, H Zekollari
arXiv preprint arXiv:2409.12034, 2024
2024
Machine Learning for Methane Detection and Quantification from Space--A survey
E Tiemann, S Zhou, A Kläser, K Heidler, R Schneider, XX Zhu
arXiv preprint arXiv:2408.15122, 2024
2024
Calving front monitoring at a subseasonal resolution: a deep learning application for Greenland glaciers
E Loebel, M Scheinert, M Horwath, A Humbert, J Sohn, K Heidler, ...
The Cryosphere 18 (7), 3315-3332, 2024
2024
Using Deep Learning to Advance Global Monitoring of Retrogressive Thaw Slumps at High Spatio-Temporal Resolution
I Nitze, K Heidler, K Maier, S Barth, N Nesterova, E Schütt, J Küpper, ...
2024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20