Stefania Russo
Stefania Russo
Roche pRED, Digital Biomarkers
Bestätigte E-Mail-Adresse bei
Zitiert von
Zitiert von
Soft and stretchable sensor using biocompatible electrodes and liquid for medical applications
S Russo, T Ranzani, H Liu, S Nefti-Meziani, K Althoefer, A Menciassi
Soft robotics 2 (4), 146-154, 2015
A quantitative evaluation of drive pattern selection for optimizing EIT-based stretchable sensors
S Russo, S Nefti-Meziani, N Carbonaro, A Tognetti
Sensors 17 (9), 1999, 2017
Active learning for anomaly detection in environmental data
S Russo, M Lürig, W Hao, B Matthews, K Villez
Environmental Modelling & Software 134, 104869, 2020
Anomaly detection using deep autoencoders for in-situ wastewater systems monitoring data
S Russo, A Disch, F Blumensaat, K Villez
arXiv preprint arXiv:2002.03843, 2020
Touch Position Detection in Electrical Tomography Tactile Sensors Through Quadratic Classifier
S Russo, R Assaf, N Carbonaro, A Tognetti
IEEE Sensors Journal, 2018
Development of a high-speed current injection and voltage measurement system for electrical impedance tomography-based stretchable sensors
S Russo, S Nefti-Meziani, N Carbonaro, A Tognetti
Technologies 5 (3), 48, 2017
Learning graph regularisation for guided super-resolution
R De Lutio, A Becker, S D'Aronco, S Russo, JD Wegner, K Schindler
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
The value of human data annotation for machine learning based anomaly detection in environmental systems
S Russo, MD Besmer, F Blumensaat, D Bouffard, A Disch, F Hammes, ...
Water Research 206, 117695, 2021
Towards the development of an eit-based stretchable sensor for multi-touch industrial human-computer interaction systems
S Russo, SN Meziani, T Gulrez, N Carbonaro, A Tognetti
Cross-Cultural Design: 8th International Conference, CCD 2016, Held as Part …, 2016
A hybrid Neural Network-SEIR model for forecasting intensive care occupancy in Switzerland during COVID-19 epidemics
R Delli Compagni, Z Cheng, S Russo, TP Van Boeckel
Plos one 17 (3), e0263789, 2022
Automated model selection in principal component analysis: A new approach based on the cross-validated ignorance score
S Russo, G Li, K Villez
Industrial & Engineering Chemistry Research 58 (30), 13448-13468, 2019
Country-wide retrieval of forest structure from optical and SAR satellite imagery with deep ensembles
A Becker, S Russo, S Puliti, N Lang, K Schindler, JD Wegner
ISPRS Journal of Photogrammetry and Remote Sensing 195, 269-286, 2023
Prospects and Pitfalls of Machine Learning in Nutritional Epidemiology
S Russo, S Bonassi
Nutrients 14 (9), 1705, 2022
Country-wide Retrieval of Forest Structure From Optical and SAR Satellite Imagery With Deep Ensembles
A Becker, S Russo, S Puliti, N Lang, K Schindler, JD Wegner
arXiv preprint arXiv:2111.13154, 2021
Flood Uncertainty Estimation Using Deep Ensembles
P Chaudhary, JP Leitão, T Donauer, S D’Aronco, N Perraudin, ...
Water 14 (19), 2980, 2022
Towards a practical implementation of EIT-based sensors using artificial neural networks
S Russo, R Assaf, S Nefti-Meziani
SENSORS, 2017 IEEE, 1-3, 2017
Digital taxonomist: Identifying plant species in community scientists’ photographs
R De Lutio, Y She, S D’Aronco, S Russo, P Brun, JD Wegner, K Schindler
ISPRS journal of photogrammetry and remote sensing 182, 112-121, 2021
A quantitative evaluation of drive patterns in electrical impedance tomography
S Russo, N Carbonaro, A Tognetti, S Nefti-Meziani
Wireless Mobile Communication and Healthcare: 6th International Conference …, 2017
Potential of supervised machine learning algorithms for estimating the impact of water efficient scenarios on solids accumulation in sewers
C Harpaz, S Russo, JP Leitão, R Penn
Water Research 216, 118247, 2022
An evaluation of deep learning models for predicting water depth evolution in urban floods
S Russo, N Perraudin, S Stalder, F Perez-Cruz, JP Leitao, G Obozinski, ...
arXiv preprint arXiv:2302.10062, 2023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20