Follow
Dominique Beaini
Dominique Beaini
Machine Learning Researcher, InVivo AI
Verified email at polymtl.ca
Title
Cited by
Cited by
Year
Principal neighbourhood aggregation for graph nets
G Corso, L Cavalleri, D Beaini, P Liň, P Veličković
NeurIPS2020, 2020
7562020
Rethinking graph transformers with spectral attention
D Kreuzer, D Beaini, W Hamilton, V Létourneau, P Tossou
Advances in Neural Information Processing Systems 34, 21618-21629, 2021
5372021
Recipe for a general, powerful, scalable graph transformer
L Rampášek, M Galkin, VP Dwivedi, AT Luu, G Wolf, D Beaini
Advances in Neural Information Processing Systems 35, 14501-14515, 2022
5202022
3d infomax improves gnns for molecular property prediction
H Stärk, D Beaini, G Corso, P Tossou, C Dallago, S Günnemann, P Liň
International Conference on Machine Learning, 20479-20502, 2022
2312022
Long range graph benchmark
VP Dwivedi, L Rampášek, M Galkin, A Parviz, G Wolf, AT Luu, D Beaini
Advances in Neural Information Processing Systems 35, 22326-22340, 2022
2012022
Directional graph networks
D Beaini, S Passaro, V Létourneau, W Hamilton, G Corso, P Liň
International Conference on Machine Learning, 748-758, 2021
2002021
Fast scene analysis using vision and artificial intelligence for object prehension by an assistive robot
C Bousquet-Jette, S Achiche, D Beaini, YSLK Cio, C Leblond-Ménard, ...
Engineering Applications of Artificial Intelligence 63, 33-44, 2017
462017
Towards interpretable sparse graph representation learning with laplacian pooling
E Noutahi, D Beaini, J Horwood, S Gigučre, P Tossou
arXiv preprint arXiv:1905.11577, 2019
412019
Image-based truss recognition for density-based topology optimization approach
JF Gamache, A Vadean, É Noirot-Nérin, D Beaini, S Achiche
Structural and Multidisciplinary Optimization 58, 2697-2709, 2018
262018
Gps++: An optimised hybrid mpnn/transformer for molecular property prediction
D Masters, J Dean, K Klaser, Z Li, S Maddrell-Mander, A Sanders, H Helal, ...
arXiv preprint arXiv:2212.02229, 2022
252022
Towards foundational models for molecular learning on large-scale multi-task datasets
D Beaini, S Huang, JA Cunha, Z Li, G Moisescu-Pareja, O Dymov, ...
arXiv preprint arXiv:2310.04292, 2023
182023
Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology
O Kraus, K Kenyon-Dean, S Saberian, M Fallah, P McLean, J Leung, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
92024
Graph positional and structural encoder
S Cantürk, R Liu, O Lapointe-Gagné, V Létourneau, G Wolf, D Beaini, ...
arXiv preprint arXiv:2307.07107, 2023
92023
Gps++: Reviving the art of message passing for molecular property prediction
D Masters, J Dean, K Klaser, Z Li, S Maddrell-Mander, A Sanders, H Helal, ...
arXiv preprint arXiv:2302.02947, 2023
72023
Deep green function convolution for improving saliency in convolutional neural networks
D Beaini, S Achiche, A Duperré, M Raison
The Visual Computer 37 (2), 227-244, 2021
72021
Novel convolution kernels for computer vision and shape analysis based on electromagnetism
D Beaini, S Achiche, YSLK Cio, M Raison
arXiv preprint arXiv:1806.07996, 2018
62018
Computing the spatial probability of inclusion inside partial contours for computer vision applications
D Beaini, S Achiche, F Nonez, M Raison
arXiv preprint arXiv:1806.01339, 2018
62018
Generating QM1B with PySCF
A Mathiasen, H Helal, K Klaser, P Balanca, J Dean, C Luschi, D Beaini, ...
Advances in Neural Information Processing Systems 36, 55036-55050, 2023
52023
Design guidelines for shoulder design of an anthropomorphic robotic arm
M Leroux, S Achiche, D Beaini, M Raison
DS 87-4 Proceedings of the 21st International Conference on Engineering …, 2017
52017
On the Scalability of GNNs for Molecular Graphs
M Sypetkowski, F Wenkel, F Poursafaei, N Dickson, K Suri, P Fradkin, ...
arXiv preprint arXiv:2404.11568, 2024
32024
The system can't perform the operation now. Try again later.
Articles 1–20