Folgen
Thomas Koprucki
Titel
Zitiert von
Zitiert von
Jahr
Beyond just “flattening the curve”: Optimal control of epidemics with purely non-pharmaceutical interventions
M Kantner, T Koprucki
Journal of Mathematics in Industry 10 (1), 1-23, 2020
1232020
Drift-diffusion models
TK Patricio Farrell, Nella Rotundo, Duy Hai Doan, Markus Kantner, Jürgen ...
Handbook of Optoelectronic Device Modeling and Simulation 2, 733-772, 2017
95*2017
Organic Electronics: Feel the Heat: Nonlinear Electrothermal Feedback in Organic LEDs (Adv. Funct. Mater. 22/2014)
A Fischer, T Koprucki, K Gärtner, ML Tietze, J Brückner, B Lüssem, K Leo, ...
Advanced Functional Materials 24 (22), 3366-3366, 2014
67*2014
Self-heating, bistability, and thermal switching in organic semiconductors
A Fischer, P Pahner, B Lüssem, K Leo, R Scholz, T Koprucki, K Gärtner, ...
Physical review letters 110 (12), 126601, 2013
662013
Feel the heat: Nonlinear electrothermal feedback in organic LEDs
A Fischer, T Koprucki, K Gärtner, ML Tietze, J Brückner, B Lüssem, K Leo, ...
Advanced Functional Materials 24 (22), 3367-3374, 2014
652014
pdelib: An open modular tool box for the numerical solution of partial differential equations. Design patterns
J Fuhrmann, T Koprucki, H Langmach
501998
Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics
P Farrell, T Koprucki, J Fuhrmann
Journal of Computational Physics 346, 497-513, 2017
482017
Multi-Band Effective Mass Approximations: Advanced Mathematical Models and Numerical Techniques
M Ehrhardt, T Koprucki
Springer, 2014
472014
Discretization scheme for drift-diffusion equations with strong diffusion enhancement
T Koprucki, K Gärtner
Optical and Quantum Electronics 45 (7), 791-796, 2013
452013
Self-heating effects in organic semiconductor crossbar structures with small active area
A Fischer, P Pahner, B Lüssem, K Leo, R Scholz, T Koprucki, J Fuhrmann, ...
Organic Electronics 13 (11), 2461-2468, 2012
452012
Numerical simulation of carrier transport in semiconductor devices at cryogenic temperatures
M Kantner, T Koprucki
Optical and Quantum Electronics 48 (12), 543, 2016
432016
On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement
T Koprucki, N Rotundo, P Farrell, DH Doan, J Fuhrmann
Optical and Quantum Electronics 47 (6), 1327-1332, 2015
392015
Simulation of static and dynamic properties of edge-emitting multiple-quantum-well lasers
U Bandelow, R Hunlich, T Koprucki
IEEE Journal of selected topics in quantum electronics 9 (3), 798-806, 2003
372003
p-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices
M Liero, T Koprucki, A Fischer, R Scholz, A Glitzky
Zeitschrift für angewandte Mathematik und Physik 66 (6), 2957-2977, 2015
342015
Wavelet approximation of correlated wave functions. II. Hyperbolic wavelets and adaptive approximation schemes
H Luo, D Kolb, HJ Flad, W Hackbusch, T Koprucki
The Journal of chemical physics 117 (8), 3625-3638, 2002
332002
Balance of horizontal and vertical charge transport in organic field-effect transistors
FM Sawatzki, DH Doan, H Kleemann, M Liero, A Glitzky, T Koprucki, ...
Physical Review Applied 10 (3), 034069, 2018
322018
Modeling of edge-emitting lasers based on tensile strained germanium microstrips
D Peschka, M Thomas, A Glitzky, R Nürnberg, K Gärtner, M Virgilio, ...
IEEE Photonics Journal 7 (3), 1-15, 2015
302015
Modeling of quantum dot lasers with microscopic treatment of Coulomb effects
T Koprucki, A Wilms, A Knorr, U Bandelow
Optical and quantum electronics 42 (11), 777-783, 2011
302011
Hybrid quantum-classical modeling of quantum dot devices
M Kantner, M Mittnenzweig, T Koprucki
Physical Review B 96 (20), 205301, 2017
292017
Operation mechanism of high performance organic permeable base transistors with an insulated and perforated base electrode
F Kaschura, A Fischer, MP Klinger, DH Doan, T Koprucki, A Glitzky, ...
Journal of Applied Physics 120 (9), 094501, 2016
292016
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20