Folgen
Anand Gopalakrishnan
Anand Gopalakrishnan
PhD student in Artificial Intelligence, IDSIA
Bestätigte E-Mail-Adresse bei idsia.ch - Startseite
Titel
Zitiert von
Zitiert von
Jahr
A neural temporal model for human motion prediction
A Gopalakrishnan, A Mali, D Kifer, L Giles, AG Ororbia
CVPR 2019, 2019
1912019
Mindstorms in natural language-based societies of mind
M Zhuge, H Liu, F Faccio, DR Ashley, R Csordás, A Gopalakrishnan, ...
arXiv preprint arXiv:2305.17066, 2023
602023
Unsupervised Object Keypoint Learning using Local Spatial Predictability
A Gopalakrishnan, S van Steenkiste, J Schmidhuber
ICLR 2021, 2021
312021
Optic disc segmentation using circular Hough transform and curve fitting
A Gopalakrishnan, A Almazroa, K Raahemifar, V Lakshminarayanan
IEM OPTRONIX 2015, 2015
262015
Unsupervised Learning of Temporal Abstractions with Slot-based Transformers
A Gopalakrishnan, K Irie, J Schmidhuber, S van Steenkiste
Neural Computation 35 (4), 593-626, 2023
17*2023
Contrastive Training of Complex-Valued Autoencoders for Object Discovery
A Stanić*, A Gopalakrishnan*, K Irie, J Schmidhuber
NeurIPS 2023, 2023
102023
Exploring the Promise and Limits of Real-Time Recurrent Learning
K Irie, A Gopalakrishnan, J Schmidhuber
ICLR 2024, 2024
92024
Unsupervised Musical Object Discovery from Audio
J Gha, V Herrmann, B Grewe, J Schmidhuber, A Gopalakrishnan
Machine Learning for Audio workshop, NeurIPS 2023, 2023
52023
Feature selection and model optimization for semi-supervised speaker spotting
SR Chetupalli, A Gopalakrishnan, TV Sreenivas
EUSIPCO 2016, 2016
12016
Enhancing JEPAs with Spatial Conditioning: Robust and Efficient Representation Learning
E Littwin, V Thilak, A Gopalakrishnan
Self-supervised learning workshop, NeurIPS 2024, 2024
2024
Recurrent Complex-Weighted Autoencoders for Unsupervised Object Discovery
A Gopalakrishnan, A Stanić, J Schmidhuber, MC Mozer
NeurIPS 2024, 2024
2024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–11