Michael Rinderle
Zitiert von
Zitiert von
Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things
H Michaels, M Rinderle, R Freitag, I Benesperi, T Edvinsson, R Socher, ...
Chemical Science 11 (11), 2895-2906, 2020
Generalized kinetic Monte Carlo framework for organic electronics
W Kaiser, J Popp, M Rinderle, T Albes, A Gagliardi
Algorithms 11 (4), 37, 2018
Machine-learned charge transfer integrals for multiscale simulations in organic thin films
M Rinderle, W Kaiser, A Mattoni, A Gagliardi
The Journal of Physical Chemistry C 124 (32), 17733-17743, 2020
Directed Assembly of Nanoparticle Threshold‐Selector Arrays
M Speckbacher, M Rinderle, W Kaiser, EA Osman, D Chryssikos, ...
Advanced Electronic Materials 5 (7), 1900098, 2019
Machine learning for predicting charge transfer integrals in organic thin films
M Rinderle, J Lederer, W Kaiser, A Gagliardi
European Materials Research Society Spring Meeting, 2019 Presentation AA. 6.2, 2019
A kinetic Monte Carlo simulation of filament formation in memristive devices
M Rinderle, M Speckbacher, M Tornow, A Gagliardi
European Materials Research Society Spring Meeting, 2019 Poster AA. P. 44, 2019, 2019
Impact of the Level and Orientation of Crystallinity on Charge Transport in Semi-Crystalline Organic Semiconductors
W Kaiser, M Rinderle, A Gagliardi
2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), 1-2, 2018
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–7