Folgen
Shang-Tse Chen
Shang-Tse Chen
Associate Professor, National Taiwan University
Bestätigte E-Mail-Adresse bei csie.ntu.edu.tw - Startseite
Titel
Zitiert von
Zitiert von
Jahr
ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector
ST Chen, C Cornelius, J Martin, DH Chau
arXiv preprint arXiv:1804.05810, 2018
5252018
Keeping the bad guys out: Protecting and vaccinating deep learning with jpeg compression
N Das, M Shanbhogue, ST Chen, F Hohman, L Chen, ME Kounavis, ...
arXiv preprint arXiv:1705.02900, 2017
3802017
Shield: Fast, practical defense and vaccination for deep learning using jpeg compression
N Das, M Shanbhogue, ST Chen, F Hohman, S Li, L Chen, ME Kounavis, ...
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge …, 2018
2512018
An Online Boosting Algorithm with Theoretical Justifications
ST Chen, HT Lin, CJ Lu
Proceedings of the Twenty-Ninth International Conference on Machine learning …, 2012
1072012
Firebird: Predicting fire risk and prioritizing fire inspections in Atlanta
M Madaio, ST Chen, OL Haimson, W Zhang, X Cheng, M Hinds-Aldrich, ...
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge …, 2016
812016
ADAGIO: Interactive Experimentation with Adversarial Attack and Defense for Audio
N Das, M Shanbhogue, ST Chen, L Chen, ME Kounavis, DH Chau
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2019
492019
Unmask: Adversarial detection and defense through robust feature alignment
S Freitas, ST Chen, ZJ Wang, DH Chau
2020 IEEE International Conference on Big Data (Big Data), 1081-1088, 2020
312020
Chronodes: Interactive multifocus exploration of event sequences
PJ Polack Jr, ST Chen, M Kahng, KD Barbaro, R Basole, M Sharmin, ...
ACM Transactions on Interactive Intelligent Systems (TiiS) 8 (1), 1-21, 2018
282018
Boosting with online binary learners for the multiclass bandit problem
ST Chen, HT Lin, CJ Lu
International Conference on Machine Learning, 342-350, 2014
252014
Communication efficient distributed agnostic boosting
ST Chen, MF Balcan, DH Chau
Artificial Intelligence and Statistics, 1299-1307, 2016
222016
Timestitch: Interactive multi-focus cohort discovery and comparison
PJ Polack, ST Chen, M Kahng, M Sharmin, DH Chau
2015 IEEE Conference on Visual Analytics Science and Technology (VAST), 209-210, 2015
222015
An ensemble of three classifiers for kdd cup 2009: Expanded linear model, heterogeneous boosting, and selective naive bayes
HY Lo, KW Chang, ST Chen, TH Chiang, CS Ferng, CJ Hsieh, YK Ko, ...
KDD-Cup 2009 Competition, 57-64, 2009
192009
Compression to the rescue: Defending from adversarial attacks across modalities
N Das, M Shanbhogue, ST Chen, F Hohman, S Li, L Chen, ME Kounavis, ...
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2018
132018
Predicting cyber threats with virtual security products
ST Chen, Y Han, DH Chau, C Gates, M Hart, KA Roundy
Proceedings of the 33rd Annual Computer Security Applications Conference …, 2017
112017
Exploratory visual analytics of mobile health data: Sensemaking challenges and opportunities
PJ Polack, M Sharmin, K de Barbaro, M Kahng, ST Chen, DH Chau
Mobile Health: Sensors, Analytic Methods, and Applications, 349-360, 2017
102017
Learning from Red Teaming: Gender Bias Provocation and Mitigation in Large Language Models
H Su, CC Cheng, H Farn, SH Kumar, S Sahay, ST Chen, H Lee
arXiv preprint arXiv:2310.11079, 2023
72023
Talk proposal: Towards the realistic evaluation of evasion attacks using CARLA
C Cornelius, ST Chen, J Martin, DH Chau
arXiv preprint arXiv:1904.12622, 2019
72019
Security recommendations based on incidents of malware
M Hart, KA Roundy, ST Chen, C Gates
US Patent 10,262,137, 2019
62019
Systems and methods for predicting security incidents triggered by security software
ST Chen, C Gates, HAN Yufei, M Hart, K Roundy
US Patent 10,242,201, 2019
62019
The efficacy of shield under different threat models
C Cornelius, N Das, ST Chen, L Chen, ME Kounavis, DH Chau
arXiv preprint arXiv:1902.00541, 2019
62019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20