Physics-informed neural networks-based model predictive control for multi-link manipulators J Nicodemus, J Kneifl, J Fehr, B Unger IFAC-PapersOnLine 55 (20), 331-336, 2022 | 63 | 2022 |
A non-intrusive nonlinear model reduction method for structural dynamical problems based on machine learning J Kneifl, D Grunert, J Fehr | 22 | 2020 |
Low-dimensional data-based surrogate model of a continuum-mechanical musculoskeletal system based on non-intrusive model order reduction J Kneifl, D Rosin, O Avci, O Röhrle, J Fehr Archive of Applied Mechanics 93 (9), 3637-3663, 2023 | 16 | 2023 |
VENI, VINDy, VICI: a variational reduced-order modeling framework with uncertainty quantification P Conti, J Kneifl, A Manzoni, A Frangi, J Fehr, SL Brunton, JN Kutz arXiv preprint arXiv:2405.20905, 2024 | 6 | 2024 |
Real-time human response prediction using a non-intrusive data-driven model reduction scheme J Kneifl, J Hay, J Fehr IFAC-PapersOnLine 55 (20), 283-288, 2022 | 4 | 2022 |
Multi-hierarchical surrogate learning for explicit structural dynamical systems using graph convolutional neural networks J Kneifl, J Fehr, SL Brunton, JN Kutz Computational Mechanics, 1-21, 2024 | 2* | 2024 |
Machine learning algorithms for learning nonlinear terms of reduced mechanical models in explicit structural dynamics J Kneifl, J Fehr PAMM 20 (S1), e202000353, 2021 | 2 | 2021 |
Data-driven identification of latent port-Hamiltonian systems J Rettberg, J Kneifl, J Herb, P Buchfink, J Fehr, B Haasdonk arXiv preprint arXiv:2408.08185, 2024 | 1 | 2024 |
On using machine learning algorithms for motorcycle collision detection P Rodegast, S Maier, J Kneifl, J Fehr Discover Applied Sciences 6 (6), 326, 2024 | 1 | 2024 |
An improved development process of production plants using digital twins with extended dynamic behaviour in virtual commissioning and control–Simulation@ Operations D Pfeifer, J Scheid, J Kneifl, J Fehr PAMM 23 (3), e202300225, 2023 | 1 | 2023 |
Simulation data from motorcycle sensors in operational and crash scenarios P Rodegast, S Maier, J Kneifl, J Fehr DaRUS, 2023 | 1 | 2023 |
Accelerated Non‐linear Stability Analysis Based on Predictions From Data‐Based Surrogate Models A Strauß, J Kneifl, A Tkachuk, J Fehr, M Bischoff International Journal for Numerical Methods in Engineering 126 (1), e7649, 2025 | | 2025 |
Multi-Fidelity Surrogate Model for Representing Hierarchical and Conflicting Databases to Approximate Human-Seat Interaction GHM Huynh, N Fahse, J Kneifl, J Linn, J Fehr IFAC-PapersOnLine 59 (1), 337-342, 2025 | | 2025 |
ApHIN-Autoencoder-based port-Hamiltonian Identification Networks (Software Package) J Kneifl, J Rettberg, J Herb DaRUS, 2024 | | 2024 |
Human Occupant Motion in Pre-Crash Scenario J Kneifl, J Hay, J Fehr DaRUS, 2022 | | 2022 |
MULTI-FIDELITY SURROGATE MODEL FOR REPRESENTING HIERARCHICAL DATABASES TO APPROXIMATE HUMAN-SEAT INTERACTION GHM Huynh, N Fahse, J Kneifl, J Fehr | | |
Low-Dimensional Identification of Port-Hamiltonian Systems by Combining Model Order Reduction and Machine Learning J Rettberg, J Kneifl, J Fehr, B Haasdonk | | |