Taking the human out of the loop: A review of Bayesian optimization B Shahriari, K Swersky, Z Wang, RP Adams, N De Freitas Proceedings of the IEEE 104 (1), 148-175, 2015 | 5807 | 2015 |
Gemma: Open models based on gemini research and technology G Team, T Mesnard, C Hardin, R Dadashi, S Bhupatiraju, S Pathak, ... arXiv preprint arXiv:2403.08295, 2024 | 735 | 2024 |
Critic regularized regression Z Wang, A Novikov, K Zolna, JS Merel, JT Springenberg, SE Reed, ... Advances in Neural Information Processing Systems 33, 7768-7778, 2020 | 340 | 2020 |
Acme: A research framework for distributed reinforcement learning MW Hoffman, B Shahriari, J Aslanides, G Barth-Maron, N Momchev, ... arXiv preprint arXiv:2006.00979, 2020 | 266 | 2020 |
Gemma 2: Improving open language models at a practical size G Team, M Riviere, S Pathak, PG Sessa, C Hardin, S Bhupatiraju, ... arXiv preprint arXiv:2408.00118, 2024 | 202 | 2024 |
On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning M Hoffman, B Shahriari, N Freitas Artificial Intelligence and Statistics, 365-374, 2014 | 180 | 2014 |
Making efficient use of demonstrations to solve hard exploration problems TL Paine, C Gulcehre, B Shahriari, M Denil, M Hoffman, H Soyer, ... arXiv preprint arXiv:1909.01387, 2019 | 96 | 2019 |
An entropy search portfolio for Bayesian optimization B Shahriari, Z Wang, MW Hoffman, A Bouchard-Côté, N de Freitas arXiv preprint arXiv:1406.4625, 2014 | 83 | 2014 |
Unbounded Bayesian optimization via regularization B Shahriari, A Bouchard-Côté, N Freitas Artificial intelligence and statistics, 1168-1176, 2016 | 81 | 2016 |
Modular mechanisms for Bayesian optimization MW Hoffman, B Shahriari NIPS workshop on Bayesian optimization, 1-5, 2014 | 37 | 2014 |
Do we need “harmless” Bayesian optimization and “first-order” Bayesian optimization MO Ahmed, B Shahriari, M Schmidt NIPS BayesOpt 5, 21, 2016 | 36 | 2016 |
Heteroscedastic treed bayesian optimisation JAM Assael, Z Wang, B Shahriari, N de Freitas arXiv preprint arXiv:1410.7172, 2014 | 30 | 2014 |
On multi-objective policy optimization as a tool for reinforcement learning A Abdolmaleki, SH Huang, G Vezzani, B Shahriari, JT Springenberg, ... arXiv preprint arXiv:2106.08199, 2021 | 24 | 2021 |
Which learning algorithms can generalize identity-based rules to novel inputs? P Tupper, B Shahriari arXiv preprint arXiv:1605.04002, 2016 | 10 | 2016 |
A combined finite element and Bayesian optimization framework for shape optimization in spectral geometry S Dominguez, N Nigam, B Shahriari Computers & Mathematics with Applications 74 (11), 2874-2896, 2017 | 9 | 2017 |
Revisiting Gaussian mixture critics in off-policy reinforcement learning: a sample-based approach B Shahriari, A Abdolmaleki, A Byravan, A Friesen, S Liu, JT Springenberg, ... arXiv preprint arXiv:2204.10256, 2022 | 7 | 2022 |
Practical Bayesian optimization with application to tuning machine learning algorithms B Shahriari University of British Columbia, 2016 | 7 | 2016 |
The modified Cahn-Hilliard equation on general surfaces B Shahriari Simon Fraser University, 2010 | 6 | 2010 |
Preference Optimization as Probabilistic Inference A Abdolmaleki, B Piot, B Shahriari, JT Springenberg, T Hertweck, R Joshi, ... arXiv preprint arXiv:2410.04166, 2024 | | 2024 |
Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning P Emedom-Nnamdi, AL Friesen, B Shahriari, N de Freitas, MW Hoffman arXiv preprint arXiv:2305.03870, 2023 | | 2023 |