Solution of large scale evolutionary problems using rational Krylov subspaces with optimized shifts V Druskin, L Knizhnerman, M Zaslavsky SIAM Journal on Scientific Computing 31 (5), 3760-3780, 2009 | 127 | 2009 |
On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems V Druskin, C Lieberman, M Zaslavsky SIAM Journal on Scientific Computing 32 (5), 2485-2496, 2010 | 109 | 2010 |
Adaptive tangential interpolation in rational Krylov subspaces for MIMO dynamical systems V Druskin, V Simoncini, M Zaslavsky SIAM Journal on Matrix Analysis and Applications 35 (2), 476-498, 2014 | 67 | 2014 |
On optimal convergence rate of the rational Krylov subspace reduction for electromagnetic problems in unbounded domains L Knizhnerman, V Druskin, M Zaslavsky SIAM Journal on Numerical Analysis 47 (2), 953-971, 2009 | 63 | 2009 |
Hybrid finite-difference integral equation solver for 3D frequency domain anisotropic electromagnetic problems M Zaslavsky, V Druskin, S Davydycheva, L Knizhnerman, A Abubakar, ... Geophysics 76 (2), F123-F137, 2011 | 62 | 2011 |
Solution of 3D time-domain electromagnetic problems using optimal subspace projection M Zaslavsky, V Druskin, L Knizhnerman Geophysics 76 (6), F339-F351, 2011 | 61 | 2011 |
A model reduction approach to numerical inversion for a parabolic partial differential equation L Borcea, V Druskin, AV Mamonov, M Zaslavsky Inverse Problems 30 (12), 125011, 2014 | 38 | 2014 |
Data set inversion using source-receiver compression A Abubakar, A Belani, VL Druskin, T Habashy, M Zaslavsky US Patent 9,176,244, 2015 | 33 | 2015 |
Finite-difference solution of the three-dimensional electromagnetic problem using divergence-free preconditioners M Zaslavsky, S Davydycheva, V Druskin, A Abubakar, T Habashy, ... 2006 SEG Annual Meeting, 2006 | 33 | 2006 |
Solution of the time-domain inverse resistivity problem in the model reduction framework Part I. One-dimensional problem with SISO data V Druskin, V Simoncini, M Zaslavsky SIAM Journal on Scientific Computing 35 (3), A1621-A1640, 2013 | 29 | 2013 |
Solution of time-convolutionary Maxwell’s equations using parameter-dependent Krylov subspace reduction M Zaslavsky, V Druskin Journal of Computational Physics 229 (12), 4831-4839, 2010 | 29 | 2010 |
Untangling the nonlinearity in inverse scattering with data-driven reduced order models L Borcea, V Druskin, AV Mamonov, M Zaslavsky Inverse Problems 34 (6), 065008, 2018 | 28 | 2018 |
Direct, nonlinear inversion algorithm for hyperbolic problems via projection-based model reduction V Druskin, AV Mamonov, AE Thaler, M Zaslavsky SIAM Journal on Imaging Sciences 9 (2), 684-747, 2016 | 28 | 2016 |
Large-scale Gauss-Newton inversion of transient controlled-source electromagnetic measurement data using the model reduction framework M Zaslavsky, V Druskin, A Abubakar, T Habashy, V Simoncini Geophysics 78 (4), E161-E171, 2013 | 27 | 2013 |
An extended Krylov subspace model-order reduction technique to simulate wave propagation in unbounded domains V Druskin, R Remis, M Zaslavsky Journal of Computational Physics 272, 608-618, 2014 | 23 | 2014 |
Reduced order model approach to inverse scattering L Borcea, V Druskin, AV Mamonov, M Zaslavsky, J Zimmerling SIAM Journal on Imaging Sciences 13 (2), 685-723, 2020 | 22 | 2020 |
A nonlinear method for imaging with acoustic waves via reduced order model backprojection V Druskin, AV Mamonov, M Zaslavsky SIAM Journal on Imaging Sciences 11 (1), 164-196, 2018 | 21 | 2018 |
On convergence of Krylov subspace approximations of time-invariant self-adjoint dynamical systems V Druskin, M Zaslavsky Linear algebra and its applications 436 (10), 3883-3903, 2012 | 19 | 2012 |
Robust nonlinear processing of active array data in inverse scattering via truncated reduced order models L Borcea, V Druskin, AV Mamonov, M Zaslavsky Journal of Computational Physics 381, 1-26, 2019 | 18 | 2019 |
Constructing a reduced order model of an electromagnetic response in a subterranean structure V Druskin, M Zaslavsky US Patent 9,529,110, 2016 | 17 | 2016 |