On a conservation upwind finite element scheme for convective diffusion equations K Baba, M Tabata RAIRO. Analyse numérique 15 (1), 3-25, 1981 | 206 | 1981 |

A second order characteristic finite element scheme for convection-diffusion problems H Rui, M Tabata Numerische Mathematik 92 (1), 161-177, 2002 | 167 | 2002 |

A finite element approximation corresponding to the upwind finite differencing M Tabata Memoirs of Numerical Mathematics 4, 47-63, 1977 | 167 | 1977 |

Multiple solutions of two-point boundary value problems of Neumann type with a small parameter M Mimura, M Tabata, Y Hosono SIAM Journal on Mathematical Analysis 11 (4), 613-631, 1980 | 152 | 1980 |

An upwind finite element scheme for high‐Reynolds‐number flows M Tabata, S Fujima International journal for numerical methods in fluids 12 (4), 305-322, 1991 | 70 | 1991 |

A precise computation of drag coefficients of a sphere M Tabata, K Itakura International Journal of Computational Fluid Dynamics 9 (3-4), 303-311, 1998 | 62 | 1998 |

Stability and convergence of a Galerkin‐characteristics finite element scheme of lumped mass type O Pironneau, M Tabata International Journal for Numerical Methods in Fluids 64 (10‐12), 1240-1253, 2010 | 61 | 2010 |

A mass-conservative characteristic finite element scheme for convection-diffusion problems H Rui, M Tabata Journal of Scientific Computing 43, 416-432, 2010 | 57 | 2010 |

Uniform convergence of the upwind finite element approximation for semilinear parabolic problems M Tabata Journal of Mathematics of Kyoto University 18 (2), 327-351, 1978 | 54 | 1978 |

A stabilized finite element method for the Rayleigh–Bénard equations with infinite Prandtl number in a spherical shell M Tabata, A Suzuki Computer Methods in Applied Mechanics and Engineering 190 (3-4), 387-402, 2000 | 51 | 2000 |

Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients M Tabata, D Tagami Numerische Mathematik 100, 351-372, 2005 | 50 | 2005 |

Error estimates of a stabilized Lagrange− Galerkin scheme for the Navier− Stokes equations H Notsu, M Tabata ESAIM: Mathematical Modelling and Numerical Analysis 50 (2), 361-380, 2016 | 49 | 2016 |

Error estimates of a pressure-stabilized characteristics finite element scheme for the Oseen equations H Notsu, M Tabata Journal of Scientific Computing 65, 940-955, 2015 | 48 | 2015 |

A single-step characteristic-curve finite element scheme of second order in time for the incompressible Navier-Stokes equations H Notsu, M Tabata Journal of Scientific Computing 38, 1-14, 2009 | 43 | 2009 |

Robustness of a characteristic finite element scheme of second order in time increment M Tabata, S Fujima Computational Fluid Dynamics 2004: Proceedings of the Third International …, 2006 | 38 | 2006 |

Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows M Tabata, D Tagami Japan journal of industrial and applied mathematics 17, 371-389, 2000 | 36 | 2000 |

Finite-element analysis of high Reynolds number flow past a circular cylinder M Tabata, S Fujima Journal of computational and Applied Mathematics 38 (1-3), 411-424, 1991 | 29 | 1991 |

A genuinely stable Lagrange–Galerkin scheme for convection-diffusion problems M Tabata, S Uchiumi Japan Journal of Industrial and Applied Mathematics 33, 121-143, 2016 | 27 | 2016 |

A finite difference approach to the number of peaks of solutions for semilinear parabolic problems M Tabata Journal of the Mathematical Society of Japan 32 (1), 171-192, 1980 | 26 | 1980 |

Discrepancy between theory and real computation on the stability of some finite element schemes M Tabata Journal of computational and applied mathematics 199 (2), 424-431, 2007 | 25 | 2007 |