Folgen
Helena Cuesta
Helena Cuesta
Research Scientist, DAACI/TMC2
Bestätigte E-Mail-Adresse bei tmc2.ai
Titel
Zitiert von
Zitiert von
Jahr
Analysis of intonation in unison choir singing
H Cuesta, E Gómez Gutiérrez, A Martorell Domínguez, F Loáiciga
552018
Deep learning based source separation applied to choir ensembles
D Petermann, P Chandna, H Cuesta, J Bonada, E Gómez
arXiv preprint arXiv:2008.07645, 2020
342020
Dagstuhl ChoirSet: A Multitrack Dataset for MIR Research on Choral Singing.
S Rosenzweig, H Cuesta, C Weiß, F Scherbaum, E Gómez, M Müller
Trans. Int. Soc. Music. Inf. Retr. 3 (1), 98-110, 2020
342020
Multiple f0 estimation in vocal ensembles using convolutional neural networks
H Cuesta, B McFee, E Gómez
arXiv preprint arXiv:2009.04172, 2020
332020
Deep learning for singing processing: Achievements, challenges and impact on singers and listeners
E Gómez, M Blaauw, J Bonada, P Chandna, H Cuesta
arXiv preprint arXiv:1807.03046, 2018
222018
Cough-based COVID-19 detection with contextual attention convolutional neural networks and gender information
A Mallol-Ragolta, H Cuesta, E Gómez, BW Schuller
172021
Multi-type outer product-based fusion of respiratory sounds for detecting COVID-19
A Mallol Ragolta, H Cuesta, E Gómez Gutiérrez, B Schuller
Ko H, Hansen JHL. Interspeech 2022; 2022 Sep 18-22; Incheon, Korea.[Baixas …, 2022
102022
A deep-learning based framework for source separation, analysis, and synthesis of choral ensembles
P Chandna, H Cuesta, D Petermann, E Gómez
Frontiers in Signal Processing 2, 808594, 2022
82022
A framework for multi-f0 modeling in SATB choir recordings
H Cuesta, E Gómez, P Chandna
arXiv preprint arXiv:1904.05086, 2019
72019
Data-driven pitch content description of choral singing recordings
H Cuesta
Universitat Pompeu Fabra, 2022
62022
A deep learning based analysis-synthesis framework for unison singing
P Chandna, H Cuesta, E Gómez
arXiv preprint arXiv:2009.09875, 2020
52020
Automatic transcription of Flamenco guitar falsetas
S Rodríguez, E Gómez Gutiérrez, H Cuesta
Holzapfel A, Pikrakis A, editors. Proceedings of the 8th International …, 2018
42018
Can MusicGen Create Training Data for MIR Tasks?
N Kroher, H Cuesta, A Pikrakis
arXiv preprint arXiv:2311.09094, 2023
32023
Voice assignment in vocal quartets using deep learning models based on pitch salience
H Cuesta, E Gómez Gutiérrez
Transactions of the International Society for Music Information Retrieval …, 2022
32022
Choir Singers Pilot–An online platform for choir singers practice
M Gover, Á Sarasúa, H Parra, J Janer, O Mayor, H Cuesta, MP Pascual, ...
Proceedings of the Web Audio Conference (WAC), 2021
22021
EIHW-MTG: Second DiCOVA Challenge System Report
A Mallol-Ragolta, H Cuesta, E Gómez, BW Schuller
arXiv preprint arXiv:2110.09239, 2021
12021
EIHW-MTG DiCOVA 2021 Challenge System Report
A Mallol-Ragolta, H Cuesta, E Gómez, BW Schuller
arXiv preprint arXiv:2110.06543, 2021
12021
Audio-based Music Retrieval
E Gómez, H Cuesta, A Gkiokas, J Gómez-Cañón, L Porcaro, F Yesiler
Information Retrieval: Advanced Topics and Techniques, 539-575, 2024
2024
DAACI-VoDAn: Improving Vocal Detection with New Data and Methods
H Cuesta, N Kroher, A Pikrakis, S Djordjevic
2023 31st European Signal Processing Conference (EUSIPCO), 136-140, 2023
2023
Automatic structure detection and visualization in symphonic music
H Cuesta
2015
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20