Tom Vieijra
Tom Vieijra
PhD Student, Research Foundation Flanders
Verified email at ugent.be
Title
Cited by
Cited by
Year
Restricted Boltzmann machines for quantum states with non-abelian or anyonic symmetries
T Vieijra, C Casert, J Nys, W De Neve, J Haegeman, J Ryckebusch, ...
Physical review letters 124 (9), 097201, 2020
422020
Interpretable machine learning for inferring the phase boundaries in a nonequilibrium system
C Casert, T Vieijra, J Nys, J Ryckebusch
Physical Review E 99 (2), 023304, 2019
292019
Isospin composition of the high-momentum fluctuations in nuclei from asymptotic momentum distributions
J Ryckebusch, W Cosyn, T Vieijra, C Casert
Physical Review C 100 (5), 054620, 2019
82019
Dynamical large deviations of two-dimensional kinetically constrained models using a neural-network state ansatz
C Casert, T Vieijra, S Whitelam, I Tamblyn
Physical review letters 127 (12), 120602, 2021
62021
Optical lattice experiments at unobserved conditions with generative adversarial deep learning
C Casert, K Mills, T Vieijra, J Ryckebusch, I Tamblyn
Physical Review Research 3 (3), 033267, 2021
5*2021
Wesley De Neve, Jutho Haegeman, Jan Ryckebusch, and Frank Verstraete,“Restricted Boltzmann Machines for Quantum States with Non-Abelian or Anyonic Symmetries,”
T Vieijra, C Casert, J Nys
Physical Review Letters 124, 097201, 2020
52020
Direct sampling of projected entangled-pair states
T Vieijra, J Haegeman, F Verstraete, L Vanderstraeten
arXiv preprint arXiv:2109.07356, 2021
2021
Many-Body Quantum States with Exact Conservation of Non-Abelian and Lattice Symmetries through Variational Monte Carlo
T Vieijra, J Nys
Physical Review B 104 (4), 045123, 2021
2021
Towards neural network quantum states with nonabelian symmetries
T Vieijra, C Casert, J Nys, W De Neve, J Haegeman, J Ryckebusch, ...
Bulletin of the American Physical Society 65, 2020
2020
Adversarial machine learning for modeling the distribution of large-scale ultracold atom experiments
C Casert, K Mills, T Vieijra, J Ryckebusch, I Tamblyn
Bulletin of the American Physical Society 65, 2020
2020
Dynamical large deviations of kinetically constrained models using neural-network states
C Casert, T Vieijra, S Whitelam, I Tamblyn
Large deviations of one-dimensional kinetically constrained models with recurrent neural networks
C Casert, T Vieijra, S Whitelam, I Tamblyn
The system can't perform the operation now. Try again later.
Articles 1–12