Maxat Kulmanov
Zitiert von
Zitiert von
DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier
M Kulmanov, MA Khan, R Hoehndorf
Bioinformatics 34 (4), 660-668, 2018
The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens
N Zhou, Y Jiang, TR Bergquist, AJ Lee, BZ Kacsoh, AW Crocker, ...
Genome Biology 20 (244), 2019
DeepGOPlus: improved protein function prediction from sequence
M Kulmanov, R Hoehndorf
Bioinformatics 37 (8), 1187, 2021
Semantic similarity and machine learning with ontologies.
M Kulmanov, FZ Smaili, X Gao, R Hoehndorf
Oxford University Press (OUP), 2020
EL Embeddings: Geometric construction of models for the Description Logic EL++
M Kulmanov, W Liu-Wei, Y Yan, R Hoehndorf
International Joint Conferences on Artificial Intelligence Organization …, 2019
Functional pangenome analysis shows key features of e protein are preserved in sars and sars-cov-2
I Alam, AA Kamau, M Kulmanov, Ł Jaremko, ST Arold, A Pain, T Gojobori, ...
Frontiers in cellular and infection microbiology 10, 405, 2020
DeepPVP: phenotype-based prioritization of causative variants using deep learning
I Boudellioua, M Kulmanov, PN Schofield, GV Gkoutos, R Hoehndorf
BMC Bioinformatics 29 (65), 2019
Semantic prioritization of novel causative genomic variants
I Boudellioua, RBM Razali, M Kulmanov, Y Hashish, VB Bajic, ...
PLoS computational biology 13 (4), e1005500, 2017
Evaluating the effect of annotation size on measures of semantic similarity
M Kulmanov, R Hoehndorf
Journal of biomedical semantics 8 (1), 1-10, 2017
PathoPhenoDB, linking human pathogens to their phenotypes in support of infectious disease research
Ş Kafkas, M Abdelhakim, Y Hashish, M Kulmanov, M Abdellatif, ...
Scientific data 6 (1), 1-8, 2019
DeepPheno: Predicting single gene loss-of-function phenotypes using an ontology-aware hierarchical classifier
M Kulmanov, R Hoehndorf
PLoS computational biology, 2020
OligoPVP: Phenotype-driven analysis of individual genomic information to prioritize oligogenic disease variants
I Boudellioua, M Kulmanov, PN Schofield, GV Gkoutos, R Hoehndorf
Scientific Reports 8 (1), 2045-2322, 2018
DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species
A Salhi, S Negrão, M Essack, MJL Morton, S Bougouffa, R Razali, ...
Scientific reports 7 (1), 5968, 2017
Ontology-based validation and identification of regulatory phenotypes
M Kulmanov, PN Schofield, GV Gkoutos, R Hoehndorf
Bioinformatics 34 (17), 2018
DeepMOCCA: A pan-cancer prognostic model identifies personalized prognostic markers through graph attention and multi-omics data integration
S Althubaiti, M Kulmanov, Y Liu, G Gkoutos, P Schofield, R Hoehndorf
bioRxiv, 2021
DeepGOWeb: fast and accurate protein function prediction on the (Semantic) Web
M Kulmanov, F Zhapa-Camacho, R Hoehndorf
Oxford University Press (OUP), 2021
Vec2SPARQL: integrating SPARQL queries and knowledge graph embeddings
M Kulmanov, S Kafkas, A Karwath, A Malic, G Gkoutos, M Dumontier, ...
Semantic Web Applications and Tools for Health Care and Life Sciences 2275, 2018
DeepGOZero: Improving protein function prediction from sequence and zero-shot learning based on ontology axioms
M Kulmanov, R Hoehndorf
Bioinformatics 38 (Supplement_1), Pages i238–i245,, 2022
Mapping OHDSI OMOP Common Data Model and GA4GH Phenopackets for COVID-19 disease epidemics and analytics
N Queralt-Rosinach, PA Moreno, T Callahan, G Delussu, C Fraboulet, ...
A machine learning based approach for similarity search on biodiversity knowledge graphs
C Weiland, M Kulmanov, M Schmidt, R Hoehndorf
Pensoft Publishers, 2019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20