Christoph Weisser
Christoph Weisser
Data Science & Statistics, BASF
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
Stock Price Predictions with LSTM Neural Networks and Twitter Sentiment
A Thormann, M.-L., Farchmin, J., Weisser, C., Kruse, R.-M., Säfken, B ...
Statistics, Optimization & Information Computing, 2021
Unsupervised document classification integrating web scraping, one-class SVM and LDA topic modelling
A Thielmann, C Weisser, A Krenz, B Säfken
Journal of Applied Statistics (Special Issue: Statistical Approaches for Big …, 2021
Pseudo-document simulation for comparing LDA, GSDMM and GPM topic models on short and sparse text using Twitter data
C Weisser, C Gerloff, A Thielmann, A Python, A Reuter, T Kneib, B Säfken
Computational Statistics 38 (2), 647-674, 2023
TTLocVis: A Twitter Topic Location Visualization Package
B Kant, G., Weisser, C. and Säfken
Journal of Open Source Software, 2020
One-Class Support Vector Machine and LDA Topic Model Integration—Evidence for AI Patents
A Thielmann, C Weisser, A Krenz
Springer Soft Computing, 2021
The Rhinobiome of Exacerbated Wheezers and Asthmatics: Insights From a German Pediatric Exacerbation Network
M Aydin, C Weisser, O Rué, M Mariadassou, S Maaß, AK Behrendt, ...
Frontiers in Allergy 2, 667562, 2021
An iterative topic model filtering framework for short and noisy user-generated data: analyzing conspiracy theories on twitter
G Kant, L Wiebelt, C Weisser, K Kis-Katos, M Luber, B Säfken
International Journal of Data Science and Analytics, 1-21, 2022
Coherence based Document Clustering
A Thielmann, C Weisser, T Kneib, B Säfken
2023 IEEE 17th International Conference on Semantic Computing (ICSC), 2023
Community-Detection via Hashtag-Graphs for Semi-Supervised NMF Topic Models
M Luber, A Thielmann, C Weisser, B Saefken
arXiv:2111.10401, 2021
Human in the loop: How to effectively create coherent topics by manually labeling only a few documents per class
A Thielmann, B Säfken, C Weisser
arXiv:2212.09422, 2022
Identifying Topical Shifts in Twitter Streams: An Integration of Non-negative Matrix Factorisation, Sentiment Analysis and Structural Break Models for Large Scale Data
M Luber, C Weisser, B Säfken, A Silbersdorff, T Kneib, K Kis-Katos
Springer Lecture Notes in Computer Science, MISDOOM, Oxford Internet Institute, 2021
Using solar panels for business purposes: Evidence based on high-frequency power usage data
C Weisser, F Lenel, Y Lu, K Kis-Katos, T Kneib
Development Engineering 6, 100074, 2021
Learning deep: Perspectives on Deep Learning Algorithms and Artificial Intelligence
B Säfken, A Silbersdorff, C Weisser
Universitätsverlag Göttingen, 2020
Replication in the narrow sense of'Financial Stability, the Trilemma, and International Reserves'(Obstfeld, Shambaugh & Taylor 2010)
C Weißer
Replication Working Papers, 2014
Topic Model—Machine Learning Classifier Integrations on Geocoded Twitter Data
G Kant, C Weisser, T Kneib, B Säfken
Biomedical and Other Applications of Soft Computing, 105-120, 2022
Twitmo: A Twitter Data Topic Modeling and Visualization Package for R
A Buchmüller, G Kant, C Weisser, B Säfken, K Kis-Katos, T Kneib
arXiv:2207.11236, 2022
Mapping ex ante risks of COVID-19 in Indonesia using a Bayesian geostatistical model on airport network data
JD Seufert, A Python, C Weisser, E Cisneros, K Kis-Katos, T Kneib
Journal of the Royal Statistical Society: Series A, 2022
AuDoLab Automatic document labelling and classification for extremely unbalanced data
T Tillmann, A., Thielmann, A, Kant, G., Weisser, C., Säfken, B ...
Journal of Open Source Software, 2021
Hedonic Founded Cleaning of the Estimated Property Value in the Micro Survey Panel on Household Finances by Linear Stochastic Imputation
C Weisser
Working Paper Deutsche Bundesbank Research Centre, 2013
The road to reproducible research: hazards to avoid and tools to get you there safely
JF Davit Svanidze, Andre Python, Christoph Weisser, Benjamin Säfken, Thomas ...
Real World Data Science (Royal Statistical Society, American Statistical …, 2023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20