Folgen
Simon Clark
Simon Clark
Bestätigte E-Mail-Adresse bei sintef.no
Titel
Zitiert von
Zitiert von
Jahr
Rechargeable batteries of the future—the state of the art from a BATTERY 2030+ perspective
M Fichtner, K Edström, E Ayerbe, M Berecibar, A Bhowmik, IE Castelli, ...
Advanced Energy Materials 12 (17), 2102904, 2022
1842022
Rational development of neutral aqueous electrolytes for zinc–air batteries
S Clark, A Latz, B Horstmann
ChemSusChem 10 (23), 4735-4747, 2017
1032017
A roadmap for transforming research to invent the batteries of the future designed within the european large scale research initiative battery 2030+
J Amici, P Asinari, E Ayerbe, P Barboux, P Bayle‐Guillemaud, RJ Behm, ...
Advanced energy materials 12 (17), 2102785, 2022
932022
Innovative zinc-based batteries
N Borchers, S Clark, B Horstmann, K Jayasayee, M Juel, P Stevens
Journal of Power Sources 484, 229309, 2021
922021
A review of model-based design tools for metal-air batteries
S Clark, A Latz, B Horstmann
Batteries 4 (1), 5, 2018
902018
Digitalization of battery manufacturing: current status, challenges, and opportunities
E Ayerbe, M Berecibar, S Clark, AA Franco, J Ruhland
Advanced Energy Materials 12 (17), 2102696, 2022
802022
Towards Rechargeable Zinc-Air Batteries with Aqueous Chloride Electrolytes
S Clark, AR Mainar, E Iruin, LC Colmenares, JA Blázquez, JR Tolchard, ...
Journal of Materials Chemistry A 7 (18), 11387-11399, 2019
652019
Designing aqueous organic electrolytes for zinc–air batteries: method, simulation, and validation
S Clark, AR Mainar, E Iruin, LC Colmenares, JA Blázquez, JR Tolchard, ...
Advanced Energy Materials 10 (10), 1903470, 2020
602020
Toward a unified description of battery data
S Clark, FL Bleken, S Stier, E Flores, CW Andersen, M Marcinek, ...
Advanced Energy Materials 12 (17), 2102702, 2022
512022
Principles of the battery data genome
L Ward, S Babinec, EJ Dufek, DA Howey, V Viswanathan, M Aykol, ...
Joule 6 (10), 2253-2271, 2022
442022
Battery 2030+ roadmap
K Edström
332020
Designing a manganese oxide bifunctional air electrode for aqueous chloride-based electrolytes in secondary zinc-air batteries
E Iruin, AR Mainar, M Enterría, N Ortiz-Vitoriano, JA Blázquez, ...
Electrochimica Acta 320, 134557, 2019
312019
Data Management Plans: the Importance of Data Management in the BIG‐MAP Project
IE Castelli, DJ Arismendi‐Arrieta, A Bhowmik, I Cekic‐Laskovic, S Clark, ...
Batteries & Supercaps 4 (12), 1803-1812, 2021
272021
Cold sintering as a cost-effective process to manufacture porous zinc electrodes for rechargeable zinc-air batteries
K Jayasayee, S Clark, C King, PI Dahl, J Richard Tolchard, M Juel
Processes 8 (5), 592, 2020
172020
Brokering between tenants for an international materials acceleration platform
M Vogler, J Busk, H Hajiyani, PB Jørgensen, N Safaei, IE Castelli, ...
Matter 6 (9), 2647-2665, 2023
102023
Aqueous zinc batteries
S Clark, N Borchers, Z Jusys, RJ Behm, B Horstmann
Encyclopedia of Electrochemistry: Online, 1-54, 2007
72007
Modeling and simulation of metal-air batteries
S Clark, IJT Jensen, S Andersson
Electrochemical Power Sources: Fundamentals, Systems, and Applications, 179-215, 2021
22021
(Digital Presentation) A Battery Interface Ontology for Data Interoperability and Semantic Knowledge Representation
S Clark, CW Andersen, E Flores, FL Bleken, J Friis
Electrochemical Society Meeting Abstracts 242, 2582-2582, 2022
12022
Designing Aqueous Neutral Electrolytes for Zinc-Air Batteries
B Horstmann, S Clark, A Mainar, E Iruin, L Colmenares, A Blazquez, ...
12019
Cover Feature: Rational Development of Neutral Aqueous Electrolytes for Zinc–Air Batteries (ChemSusChem 23/2017)
S Clark, A Latz, B Horstmann
ChemSusChem 10 (23), 4666-4666, 2017
12017
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20