Extending geometric singular perturbation theory to nonhyperbolic points---fold and canard points in two dimensions M Krupa, P Szmolyan SIAM journal on mathematical analysis 33 (2), 286-314, 2001 | 422 | 2001 |
Relaxation oscillation and canard explosion M Krupa, P Szmolyan Journal of Differential Equations 174 (2), 312-368, 2001 | 386 | 2001 |
Canards in R3 P Szmolyan, M Wechselberger Journal of Differential Equations 177 (2), 419-453, 2001 | 318 | 2001 |
Transversal heteroclinic and homoclinic orbits in singular perturbation problems P Szmolyan Journal of differential equations 92 (2), 252-281, 1991 | 165 | 1991 |
Fast and slow waves in the FitzHugh–Nagumo equation M Krupa, B Sandstede, P Szmolyan Journal of Differential Equations 133 (1), 49-97, 1997 | 142 | 1997 |
Relaxation oscillations in R3 P Szmolyan, M Wechselberger Journal of Differential Equations 200 (1), 69-104, 2004 | 124 | 2004 |
Geometry of mixed-mode oscillations in the 3-d autocatalator A Milik, P Szmolyan, H Löffelmann, E Gröller International Journal of Bifurcation and Chaos 8 (03), 505-519, 1998 | 124 | 1998 |
Extending slow manifolds near transcritical and pitchfork singularities M Krupa, P Szmolyan Nonlinearity 14 (6), 1473, 2001 | 108 | 2001 |
Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves H Freistűhler, P Szmolyan SIAM Journal on Mathematical Analysis 26 (1), 112-128, 1995 | 91 | 1995 |
Spectral stability of small shock waves H Freistühler, P Szmolyan Archive for rational mechanics and analysis 164 (4), 287-309, 2002 | 69 | 2002 |
Multiple time scales and canards in a chemical oscillator A Milik, P Szmolyan Multiple-time-scale dynamical systems, 117-140, 2001 | 60 | 2001 |
A geometric singular perturbation analysis of detonation and deflagration waves I Gasser, P Szmolyan SIAM journal on mathematical analysis 24 (4), 968-986, 1993 | 56 | 1993 |
Scaling in singular perturbation problems: blowing up a relaxation oscillator I Kosiuk, P Szmolyan SIAM Journal on Applied Dynamical Systems 10 (4), 1307-1343, 2011 | 54 | 2011 |
Geometric singular perturbation analysis of an autocatalator model I Gucwa, P Szmolyan Discrete & Continuous Dynamical Systems-S 2 (4), 783, 2009 | 44 | 2009 |
Geometric analysis of the singularly perturbed planar fold M Krupa, P Szmolyan Multiple-time-scale dynamical systems, 89-116, 2001 | 42 | 2001 |
Asymptotic expansions using blow-up S Van Gils, M Krupa, P Szmolyan Zeitschrift für angewandte Mathematik und Physik ZAMP 56 (3), 369-397, 2005 | 41 | 2005 |
A geometric analysis of the Lagerstrom model problem N Popovic, P Szmolyan Journal of Differential Equations 199 (2), 290-325, 2004 | 37 | 2004 |
A system of convection—diffusion equations with small diffusion coefficient arising in semiconductor physics PA Markowich, P Szmolyan Journal of Differential Equations 81 (2), 234-254, 1989 | 36 | 1989 |
Geometric analysis of the Goldbeter minimal model for the embryonic cell cycle I Kosiuk, P Szmolyan Journal of mathematical biology 72 (5), 1337-1368, 2016 | 34 | 2016 |
Composite waves in the Dafermos regularization S Schecter, P Szmolyan Journal of Dynamics and Differential Equations 16 (3), 847-867, 2004 | 33 | 2004 |