Folgen
Iasonas Kokkinos
Iasonas Kokkinos
Snap Inc., University College London
Bestätigte E-Mail-Adresse bei snapchat.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
LC Chen, G Papandreou, I Kokkinos, K Murphy, AL Yuille
IEEE transactions on pattern analysis and machine intelligence 40 (4), 834-848, 2018
194792018
Semantic image segmentation with deep convolutional nets and fully connected crfs
LC Chen, G Papandreou, I Kokkinos, K Murphy, AL Yuille
arXiv preprint arXiv:1412.7062, 2014
58522014
Describing textures in the wild
M Cimpoi, S Maji, I Kokkinos, S Mohamed, A Vedaldi
Proceedings of the IEEE conference on computer vision and pattern …, 2014
22952014
Densepose: Dense human pose estimation in the wild
RA Güler, N Neverova, I Kokkinos
Proceedings of the IEEE conference on computer vision and pattern …, 2018
14582018
Discriminative learning of deep convolutional feature point descriptors
E Simo-Serra, E Trulls, L Ferraz, I Kokkinos, P Fua, F Moreno-Noguer
Proceedings of the IEEE International Conference on Computer Vision, 118-126, 2015
9792015
Discriminative learning of deep convolutional feature point descriptors
E Simo-Serra, E Trulls, L Ferraz, I Kokkinos, P Fua, F Moreno-Noguer
Proceedings of the IEEE International Conference on Computer Vision, 118-126, 2015
9792015
UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited Memory
I Kokkinos
arXiv preprint arXiv:1609.02132, 2016
7692016
Scale-invariant heat kernel signatures for non-rigid shape recognition
MM Bronstein, I Kokkinos
2010 IEEE computer society conference on computer vision and pattern …, 2010
7402010
Semantic image segmentation with deep convolutional nets and fully connected crfs
C Liang-Chieh, G Papandreou, I Kokkinos, K Murphy, A Yuille
International conference on learning representations, 2015
3932015
Pushing the boundaries of boundary detection using deep learning
I Kokkinos
arXiv preprint arXiv:1511.07386, 2015
2952015
Discovering discriminative action parts from mid-level video representations
M Raptis, I Kokkinos, S Soatto
2012 IEEE conference on computer vision and pattern recognition, 1242-1249, 2012
2892012
Holopose: Holistic 3d human reconstruction in-the-wild
RA Guler, I Kokkinos
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019
2452019
Dense pose transfer
N Neverova, RA Guler, I Kokkinos
Proceedings of the European conference on computer vision (ECCV), 123-138, 2018
2422018
Fast, exact and multi-scale inference for semantic image segmentation with deep gaussian crfs
S Chandra, I Kokkinos
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016
2322016
Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection
G Papandreou, I Kokkinos, PA Savalle
Proceedings of the IEEE conference on computer vision and pattern …, 2015
2322015
Attentive single-tasking of multiple tasks
KK Maninis, I Radosavovic, I Kokkinos
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019
2262019
Deforming autoencoders: Unsupervised disentangling of shape and appearance
Z Shu, M Sahasrabudhe, RA Guler, D Samaras, N Paragios, I Kokkinos
Proceedings of the European conference on computer vision (ECCV), 650-665, 2018
2162018
Densereg: Fully convolutional dense shape regression in-the-wild
R Alp Guler, G Trigeorgis, E Antonakos, P Snape, S Zafeiriou, I Kokkinos
Proceedings of the IEEE conference on computer vision and pattern …, 2017
2152017
SHREC 2011: robust feature detection and description benchmark
E Boyer, AM Bronstein, MM Bronstein, B Bustos, T Darom, R Horaud, ...
arXiv preprint arXiv:1102.4258, 2011
2142011
Intrinsic shape context descriptors for deformable shapes
I Kokkinos, MM Bronstein, R Litman, AM Bronstein
2012 IEEE Conference on Computer Vision and Pattern Recognition, 159-166, 2012
2042012
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20