Folgen
Nathan Srebro
Nathan Srebro
Professor, TTIC and University of Chicago
Bestätigte E-Mail-Adresse bei ttic.edu
Titel
Zitiert von
Zitiert von
Jahr
Equality of opportunity in supervised learning
M Hardt, E Price, N Srebro
Advances in neural information processing systems 29, 2016
29802016
Pegasos: Primal estimated sub-gradient solver for svm
S Shalev-Shwartz, Y Singer, N Srebro
Proceedings of the 24th international conference on Machine learning, 807-814, 2007
26632007
Maximum-margin matrix factorization
N Srebro, J Rennie, T Jaakkola
Advances in neural information processing systems 17, 2004
13262004
Fast maximum margin matrix factorization for collaborative prediction
JDM Rennie, N Srebro
Proceedings of the 22nd international conference on Machine learning, 713-719, 2005
12312005
The marginal value of adaptive gradient methods in machine learning
AC Wilson, R Roelofs, M Stern, N Srebro, B Recht
Advances in neural information processing systems 30, 2017
9992017
Weighted low-rank approximations
N Srebro, T Jaakkola
Proceedings of the 20th international conference on machine learning (ICML …, 2003
9632003
Exploring generalization in deep learning
B Neyshabur, S Bhojanapalli, D McAllester, N Srebro
Advances in neural information processing systems 30, 2017
9612017
The implicit bias of gradient descent on separable data
D Soudry, E Hoffer, MS Nacson, S Gunasekar, N Srebro
The Journal of Machine Learning Research 19 (1), 2822-2878, 2018
6512018
Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm
D Needell, R Ward, N Srebro
Advances in neural information processing systems 27, 2014
5602014
In search of the real inductive bias: On the role of implicit regularization in deep learning
B Neyshabur, R Tomioka, N Srebro
arXiv preprint arXiv:1412.6614, 2014
4892014
A pac-bayesian approach to spectrally-normalized margin bounds for neural networks
B Neyshabur, S Bhojanapalli, N Srebro
arXiv preprint arXiv:1707.09564, 2017
4802017
Norm-based capacity control in neural networks
B Neyshabur, R Tomioka, N Srebro
Conference on learning theory, 1376-1401, 2015
4642015
Towards understanding the role of over-parametrization in generalization of neural networks
B Neyshabur, Z Li, S Bhojanapalli, Y LeCun, N Srebro
arXiv preprint arXiv:1805.12076, 2018
4492018
Rank, trace-norm and max-norm
N Srebro, A Shraibman
Learning Theory: 18th Annual Conference on Learning Theory, COLT 2005 …, 2005
4332005
Learnability, stability and uniform convergence
S Shalev-Shwartz, O Shamir, N Srebro, K Sridharan
The Journal of Machine Learning Research 11, 2635-2670, 2010
4182010
Uncovering shared structures in multiclass classification
Y Amit, M Fink, N Srebro, S Ullman
Proceedings of the 24th international conference on Machine learning, 17-24, 2007
3932007
Global optimality of local search for low rank matrix recovery
S Bhojanapalli, B Neyshabur, N Srebro
Advances in Neural Information Processing Systems, 3873-3881, 2016
3732016
Better mini-batch algorithms via accelerated gradient methods
A Cotter, O Shamir, N Srebro, K Sridharan
Advances in neural information processing systems 24, 2011
3392011
SVM optimization: inverse dependence on training set size
S Shalev-Shwartz, N Srebro
Proceedings of the 25th international conference on Machine learning, 928-935, 2008
3242008
Implicit regularization in matrix factorization
S Gunasekar, BE Woodworth, S Bhojanapalli, B Neyshabur, N Srebro
Advances in Neural Information Processing Systems 30, 2017
3222017
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20