Martin Steinegger
Martin Steinegger
Assistant Professor of Bioinformatics, Seoul National University, Korea
Verified email at - Homepage
Cited by
Cited by
Highly accurate protein structure prediction with AlphaFold
J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, ...
Nature, 2021
MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets
M Steinegger, J Söding
Nature biotechnology 35 (11), 1026-1028, 2017
HH-suite3 for fast remote homology detection and deep protein annotation
M Steinegger, M Meier, M Mirdita, H Vöhringer, SJ Haunsberger, J Söding
BMC Bioinformatics 20, 2019
Clustering huge protein sequence sets in linear time
M Steinegger, J Söding
Nature communications 9 (1), 1-8, 2018
Uniclust databases of clustered and deeply annotated protein sequences and alignments
M Mirdita, L von den Driesch, C Galiez, MJ Martin, J Söding, M Steinegger
Nucleic Acids Research, 2016
ColabFold - Making protein folding accessible to all
M Mirdita, S Ovchinnikov, M Steinegger
biorxiv, 2021
ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing
A Elnaggar, M Heinzinger, C Dallago, G Rehawi, Y Wang, L Jones, ...
IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (8), 2021
Protein sequence analysis using the MPI bioinformatics toolkit
F Gabler, SZ Nam, S Till, M Mirdita, M Steinegger, J Söding, AN Lupas, ...
Current Protocols in Bioinformatics 72 (1), e108, 2020
Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold
M Steinegger, M Mirdita, J Söding
Nature Methods 16, 603–606, 2019
High accuracy protein structure prediction using deep learning
J Jumper, R Evans, A Pritzel, T Green, M Figurnov, K Tunyasuvunakool, ...
Fourteenth Critical Assessment of Techniques for Protein Structure …, 2020
MMseqs2 desktop and local web server app for fast, interactive sequence searches
M Mirdita, M Steinegger, J Söding
Bioinformatics 35 (16), 2856–2858, 2019
Terminating contamination: large-scale search identifies more than 2,000,000 contaminated entries in GenBank
M Steinegger, SL Salzberg
Genome Biology 21, 2020
MMseqs software suite for fast and deep clustering and searching of large protein sequence sets
M Hauser, M Steinegger, J Söding
Bioinformatics 32 (9), 1323-1330, 2016
Applying and improving AlphaFold at CASP14
J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, ...
Proteins: Structure, Function, and Bioinformatics 89 (12), 1711-1721, 2021
PredictProtein - Predicting Protein Structure and Function for 29 Years
M Bernhofer, C Dallago, T Karl, V Satagopam, M Heinzinger, M Littmann, ...
Nucleic Acids Research, 2021
Gearing up to handle the mosaic nature of life in the quest for orthologs
K Forslund, C Pereira, S Capella-Gutierrez, AS da Silva, A Altenhoff, ...
Bioinformatics 34 (2), 323-329, 2018
Fast and sensitive taxonomic assignment to metagenomic contigs
M Mirdita, M Steinegger, F Breitwieser, J Söding, E Levy Karin
Bioinformatics, 2021
Cloud prediction of protein structure and function with PredictProtein for Debian
L Kaján, G Yachdav, E Vicedo, M Steinegger, M Mirdita, C Angermüller, ...
BioMed Research International 2013, 2013
HFSP: high speed homology-driven function annotation of proteins
Y Mahlich, M Steinegger, B Rost, Y Bromberg
Bioinformatics 34 (13), i304-i312, 2018
DescribePROT: database of amino acid-level protein structure and function predictions
B Zhao, A Katuwawala, CJ Oldfield, AK Dunker, E Faraggi, J Gsponer, ...
Nucleic Acids Research 49 (D1), D298-D308, 2021
The system can't perform the operation now. Try again later.
Articles 1–20