Applying Occam's Razor to transformer-based dependency parsing: what works, what doesn't, and what is really necessary S Grünewald, A Friedrich, J Kuhn arXiv preprint arXiv:2010.12699, 2020 | 15 | 2020 |
RobertNLP at the IWPT 2020 shared task: Surprisingly simple enhanced UD parsing for English S Grünewald, A Friedrich | 12 | 2020 |
Coordinate constructions in English enhanced Universal Dependencies: Analysis and computational modeling S Grünewald, P Piccirilli, A Friedrich arXiv preprint arXiv:2103.08955, 2021 | 7 | 2021 |
Graph-based universal dependency parsing in the age of the transformer: What works, and what doesn’t S Grünewald, A Friedrich, J Kuhn arXiv preprint arXiv:2010.12699, 2020 | 5 | 2020 |
Negation-instance based evaluation of end-to-end negation resolution E Sineva, S Grünewald, A Friedrich, J Kuhn arXiv preprint arXiv:2109.10013, 2021 | 3 | 2021 |
RobertNLP at the IWPT 2021 shared task: Simple enhanced UD parsing for 17 languages S Grünewald, FT Oertel, A Friedrich Proceedings of the 17th International Conference on Parsing Technologies and …, 2021 | 3 | 2021 |
Unifying the treatment of preposition-determiner contractions in German universal dependencies treebanks S Grünewald, A Friedrich Proceedings of the Fourth Workshop on Universal Dependencies (UDW 2020), 94-98, 2020 | 2 | 2020 |
Generalized chart constraints for efficient PCFG and TAG parsing S Grünewald, S Henning, A Koller arXiv preprint arXiv:1806.10654, 2018 | 2 | 2018 |
Mulms: A multi-layer annotated text corpus for information extraction in the materials science domain TP Schrader, M Finco, S Grünewald, F Hildebrand, A Friedrich arXiv preprint arXiv:2310.15569, 2023 | 1 | 2023 |
MIST: a Large-Scale Annotated Resource and Neural Models for Functions of Modal Verbs in English Scientific Text S Henning, N Macher, S Grünewald, A Friedrich arXiv preprint arXiv:2212.07156, 2022 | 1 | 2022 |
Device and method for filling a knowledge graph, training method therefor S Gruenewald, A Friedrich US Patent App. 17/450,489, 2022 | 1 | 2022 |
Annotation and Classification of Locations in Folktales M Lindemann, S Grünewald, T Declerck Proceedings of the Second Workshop on Corpus-Based Research in the …, 0 | 1 | |
MuLMS-AZ: An Argumentative Zoning Dataset for the Materials Science Domain TP Schrader, T Bürkle, S Henning, S Tan, M Finco, S Grünewald, ... arXiv preprint arXiv:2307.02340, 2023 | | 2023 |
Maximum Spanning Trees Are Invariant to Temperature Scaling in Graph-based Dependency Parsing S Grünewald arXiv preprint arXiv:2106.08159, 2021 | | 2021 |
A corpus study of creating rule-based enhanced universal dependencies for German T Bürkle, S Grünewald, A Friedrich | | 2021 |
Formalisierung von Märchen. T Declerck, A Aman, S Grünewald, M Lindemann, L Schäfer, ... DHd, 2018 | | 2018 |