Folgen
Anjany Sekuboyina
Anjany Sekuboyina
Bestätigte E-Mail-Adresse bei tum.de
Titel
Zitiert von
Zitiert von
Jahr
The liver tumor segmentation benchmark (lits)
P Bilic, P Christ, HB Li, E Vorontsov, A Ben-Cohen, G Kaissis, A Szeskin, ...
Medical Image Analysis 84, 102680, 2023
8032023
Knowledge-aided convolutional neural network for small organ segmentation
Y Zhao, H Li, S Wan, A Sekuboyina, X Hu, G Tetteh, M Piraud, B Menze
IEEE journal of biomedical and health informatics 23 (4), 1363-1373, 2019
1862019
VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images
A Sekuboyina, A Bayat, ME Husseini, M Löffler, H Li, G Tetteh, J Kukačka, ...
Medical Image Analysis 73, 102166, 2021
175*2021
clDice-a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation
S Shit, JC Paetzold, A Sekuboyina, I Ezhov, A Unger, A Zhylka, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
1442021
A vertebral segmentation dataset with fracture grading
MT Löffler, A Sekuboyina, A Jacob, AL Grau, A Scharr, M El Husseini, ...
Radiology: Artificial Intelligence 2 (4), e190138, 2020
1122020
DiamondGAN: Unified Multi-Modal Generative Adversarial Networks for MRI Sequences Synthesis
H Li, JC Paetzold, A Sekuboyina, F Kofler, J Zhang, JS Kirschke, ...
arXiv preprint arXiv:1904.12894, 2019
802019
Btrfly net: Vertebrae labelling with energy-based adversarial learning of local spine prior
A Sekuboyina, M Rempfler, J Kukačka, G Tetteh, A Valentinitsch, ...
Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st …, 2018
702018
A localisation-segmentation approach for multi-label annotation of lumbar vertebrae using deep nets
A Sekuboyina, A Valentinitsch, JS Kirschke, BH Menze
arXiv preprint arXiv:1703.04347, 2017
642017
Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA
MT Löffler, A Jacob, A Scharr, N Sollmann, E Burian, M El Husseini, ...
European radiology 31, 6069-6077, 2021
582021
A convolutional neural network approach for abnormality detection in Wireless Capsule Endoscopy
AK Sekuboyina, ST Devarakonda, CS Seelamantula
2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017 …, 2017
572017
Attention-driven deep learning for pathological spine segmentation
A Sekuboyina, J Kukačka, JS Kirschke, BH Menze, A Valentinitsch
International workshop on computational methods and clinical applications in …, 2017
552017
Labeling vertebrae with two-dimensional reformations of multidetector CT images: an adversarial approach for incorporating prior knowledge of spine anatomy
A Sekuboyina, M Rempfler, A Valentinitsch, BH Menze, JS Kirschke
Radiology: Artificial Intelligence 2 (2), e190074, 2020
39*2020
Deep reinforcement learning for organ localization in CT
F Navarro, A Sekuboyina, D Waldmannstetter, JC Peeken, SE Combs, ...
Medical Imaging with Deep Learning, 544-554, 2020
382020
Red-GAN: Attacking class imbalance via conditioned generation. Yet another medical imaging perspective.
AB Qasim, I Ezhov, S Shit, O Schoppe, JC Paetzold, A Sekuboyina, ...
Medical Imaging with Deep Learning, 655-668, 2020
382020
A computed tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner data
H Liebl, D Schinz, A Sekuboyina, L Malagutti, MT Löffler, A Bayat, ...
Scientific Data 8 (1), 284, 2021
342021
Grading loss: a fracture grade-based metric loss for vertebral fracture detection
M Husseini, A Sekuboyina, M Loeffler, F Navarro, BH Menze, JS Kirschke
Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd …, 2020
212020
Evaluating the Robustness of Self-Supervised Learning in Medical Imaging
F Navarro, C Watanabe, S Shit, A Sekuboyina, JC Peeken, SE Combs, ...
arXiv preprint arXiv:2105.06986, 2021
182021
Automated opportunistic osteoporosis screening in routine computed tomography of the spine: comparison with dedicated quantitative CT
N Sollmann, MT Löffler, M El Husseini, A Sekuboyina, M Dieckmeyer, ...
Journal of Bone and Mineral Research 37 (7), 1287-1296, 2022
142022
Automated detection of the contrast phase in MDCT by an artificial neural network improves the accuracy of opportunistic bone mineral density measurements
S Rühling, F Navarro, A Sekuboyina, M El Husseini, T Baum, B Menze, ...
European Radiology, 1-10, 2022
132022
Deep learning-based parameter mapping for joint relaxation and diffusion tensor MR Fingerprinting
CM Pirk, PA Gómez, I Lipp, G Buonincontri, M Molina-Romero, ...
Medical Imaging with Deep Learning, 638-654, 2020
132020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20