Steffen Schnitzer
Steffen Schnitzer
Technische Universität Darmstadt - Multimedia Communications Lab
Bestätigte E-Mail-Adresse bei kom.tu-darmstadt.de - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Demands on task recommendation in crowdsourcing platforms-the worker’s perspective
S Schnitzer, C Rensing, S Schmidt, K Borchert, M Hirth, P Tran-Gia
CrowdRec Workshop, 2015
272015
Text classification based filters for a domain-specific search engine
S Schmidt, S Schnitzer, C Rensing
Computers in Industry 78, 70-79, 2016
242016
Perceived task similarities for task recommendation in crowdsourcing systems
S Schnitzer, S Neitzel, S Schmidt, C Rensing
Proceedings of the 25th International Conference Companion on World Wide Web …, 2016
132016
Combining active and ensemble learning for efficient classification of web documents
S Schnitzer, S Schmidt, C Rensing, B Harriehausen-Miihlbauer
Polibits, 39-46, 2014
132014
Impact of task recommendation systems in crowdsourcing platforms
K Borchert, M Hirth, S Schnitzer, C Rensing
42017
Domain-independent sentence type classification: examining the scenarios of scientific abstracts and scrum protocols
S Schmidt, S Schnitzer, C Rensing
Proceedings of the 14th International Conference on Knowledge Technologies …, 2014
42014
Preselection of documents for personalized recommendations of job postings based on word embeddings
S Schnitzer, D Reis, W Alkhatib, C Rensing, R Steinmetz
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, 1683-1686, 2019
32019
Effective classification of ambiguous web documents incorporating human feedback efficiently
S Schmidt, S Schnitzer, C Rensing, B Harriehausen-Mühlbauer
32013
Ensuring Novelty and Transparency in Learning Resource-Recommendation Based on Deep Learning Techniques
W Alkhatib, E Araache, C Rensing, S Schnitzer
European Conference on Technology Enhanced Learning, 609-612, 2018
22018
From task classification towards similarity measures for recommendation in crowdsourcing systems
S Schnitzer, S Neitzel, C Rensing
arXiv preprint arXiv:1707.06562, 2017
22017
Training-Less Multi-label Text Classification Using Knowledge Bases and Word Embeddings
W Alkhatib, S Schnitzer, C Rensing
International Conference on Knowledge Science, Engineering and Management …, 2019
12019
Task Recommendation in Crowdsourcing Platforms
S Schnitzer
Technische Universität, 2019
12019
A Literature Review on the Design of Enterprise Crowdsourcing Platforms
S Schnitzer, N Islam, C Borg-Krebs, C Rensing
Tech. rep. KOM-TR-2017-02. Darmstadt, Germany: TU Darmstadt, 2017. url …, 0
1
Unsupervised Query-based Document Recommendation Using Deep Learning
W Alkhatib, S Schnitzer, T Steuer, C Rensing
2019
Task Recommendation in Crowdsourcing Platforms: Worker Centered Approaches for Task Assignment and Recommendation in Online Task Markets Based on Textual Descriptions
SM Schnitzer
Technische Universität Darmstadt, 2019
2019
Results of a Survey About the Perceived Task Similarities in Micro Task Crowdsourcing Systems
S Schnitzer, S Neitzel, S Schmidt, C Rensing
Behavioral Analytics in Social and Ubiquitous Environments, 107-125, 2015
2015
Generic Sentence Classification: Examining the Scenario of Scientific
S Schmidt, S Schnitzer, C Rensing
2014
Comparison of Feature Selection Techniques for Multi-label Text Classification against a New Semantic-based Method
W Alkhatib, S Schnitzer, W Ding, P Jiang, Y ALkhalili, C Rensing
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–18