Folgen
Matteo Poggi
Matteo Poggi
Tenure-Track Assistant professor (RTD-B), University of Bologna
Bestätigte E-Mail-Adresse bei unibo.it - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Real-time self-adaptive deep stereo
A Tonioni, F Tosi, M Poggi, S Mattoccia, LD Stefano
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019
2832019
Learning monocular depth estimation infusing traditional stereo knowledge
F Tosi, F Aleotti, M Poggi, S Mattoccia
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
2382019
On the uncertainty of self-supervised monocular depth estimation
M Poggi, F Aleotti, F Tosi, S Mattoccia
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
2342020
Towards real-time unsupervised monocular depth estimation on cpu
M Poggi, F Aleotti, F Tosi, S Mattoccia
2018 IEEE/RSJ international conference on intelligent robots and systems …, 2018
1622018
Learning monocular depth estimation with unsupervised trinocular assumptions
M Poggi, F Tosi, S Mattoccia
2018 International conference on 3d vision (3DV), 324-333, 2018
1602018
A wearable mobility aid for the visually impaired based on embedded 3D vision and deep learning
M Poggi, S Mattoccia
2016 IEEE symposium on computers and communication (ISCC), 208-213, 2016
1392016
Generative adversarial networks for unsupervised monocular depth prediction
F Aleotti, F Tosi, M Poggi, S Mattoccia
Proceedings of the European conference on computer vision (ECCV) workshops, 0-0, 2018
1262018
On the Synergies between Machine Learning and Binocular Stereo for Depth Estimation from Images: a Survey
M Poggi, F Tosi, K Batsos, P Mordohai, S Mattoccia
arXiv preprint arXiv:2004.08566, 2020
1202020
Learning from scratch a confidence measure
M Poggi, S Mattoccia
British Machine Vision Conference (BMVC) 2016, 2016
1182016
Unsupervised adaptation for deep stereo
A Tonioni, M Poggi, S Mattoccia, L Di Stefano
Proceedings of the IEEE International Conference on Computer Vision, 1605-1613, 2017
1142017
Geometry meets semantics for semi-supervised monocular depth estimation
P Zama Ramirez, M Poggi, F Tosi, S Mattoccia, L Di Stefano
Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth …, 2019
1132019
Monovit: Self-supervised monocular depth estimation with a vision transformer
C Zhao, Y Zhang, M Poggi, F Tosi, X Guo, Z Zhu, G Huang, Y Tang, ...
2022 international conference on 3D vision (3DV), 668-678, 2022
1072022
Quantitative evaluation of confidence measures in a machine learning world
M Poggi, F Tosi, S Mattoccia
Proceedings of the IEEE International Conference on Computer Vision, 5228-5237, 2017
852017
Guided stereo matching
M Poggi, D Pallotti, F Tosi, S Mattoccia
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019
842019
A computer vision approach based on deep learning for the detection of dairy cows in free stall barn
P Tassinari, M Bovo, S Benni, S Franzoni, M Poggi, LME Mammi, ...
Computers and Electronics in Agriculture 182, 106030, 2021
802021
Learning a general-purpose confidence measure based on o (1) features and a smarter aggregation strategy for semi global matching
M Poggi, S Mattoccia
3D Vision (3DV), 2016 Fourth International Conference on, 509-518, 2016
792016
Distilled semantics for comprehensive scene understanding from videos
F Tosi, F Aleotti, PZ Ramirez, M Poggi, S Salti, LD Stefano, S Mattoccia
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
722020
Unsupervised domain adaptation for depth prediction from images
A Tonioni, M Poggi, S Mattoccia, L Di Stefano
IEEE transactions on pattern analysis and machine intelligence 42 (10), 2396 …, 2019
712019
Real-time semantic stereo matching
PL Dovesi, M Poggi, L Andraghetti, M Martí, H Kjellström, A Pieropan, ...
2020 IEEE international conference on robotics and automation (ICRA), 10780 …, 2020
702020
Beyond local reasoning for stereo confidence estimation with deep learning
F Tosi, M Poggi, A Benincasa, S Mattoccia
Proceedings of the European Conference on Computer Vision (ECCV), 319-334, 2018
662018
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20