Folgen
Anselm Haselhoff
Anselm Haselhoff
Professor für Fahrzeuginformationstechnik, Hochschule Ruhr West
Bestätigte E-Mail-Adresse bei hs-ruhrwest.de - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Multivariate confidence calibration for object detection
F Kuppers, J Kronenberger, A Shantia, A Haselhoff
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
1362020
A vehicle detection system based on haar and triangle features
A Haselhoff, A Kummert
2009 IEEE intelligent vehicles symposium, 261-266, 2009
1142009
Inspect, understand, overcome: A survey of practical methods for ai safety
S Houben, S Abrecht, M Akila, A Bär, F Brockherde, P Feifel, ...
Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty …, 2022
682022
Pedestrian crossing detecting as a part of an urban pedestrian safety system
S Sichelschmidt, A Haselhoff, A Kummert, M Roehder, B Elias, K Berns
2010 IEEE Intelligent Vehicles Symposium, 840-844, 2010
392010
Radar-vision fusion for vehicle detection by means of improved haar-like feature and adaboost approach
A Haselhoff, A Kummert, G Schneider
2007 15th European Signal Processing Conference, 2070-2074, 2007
372007
On visual crosswalk detection for driver assistance systems
A Haselhoff, A Kummert
2010 IEEE Intelligent Vehicles Symposium, 883-888, 2010
322010
Radar-vision fusion with an application to car-following using an improved adaboost detection algorithm
A Haselhoff, A Kummert, G Schneider
2007 IEEE Intelligent Transportation Systems Conference, 854-858, 2007
322007
Deep neural networks and data for automated driving: Robustness, uncertainty quantification, and insights towards safety
T Fingscheidt, H Gottschalk, S Houben
Springer Nature, 2022
292022
An evolutionary optimized vehicle tracker in collaboration with a detection system
A Haselhoff, A Kummert
2009 12th International IEEE Conference on Intelligent Transportation …, 2009
292009
A signal theoretic approach to measure the influence of image resolution for appearance-based vehicle detection
A Haselhoff, S Schauland, A Kummert
2008 IEEE Intelligent Vehicles Symposium, 822-827, 2008
242008
From black-box to white-box: examining confidence calibration under different conditions
F Schwaiger, M Henne, F Küppers, FS Roza, K Roscher, A Haselhoff
arXiv preprint arXiv:2101.02971, 2021
182021
Random forest on an embedded device for real-time machine state classification
F Küppers, J Albers, A Haselhoff
2019 27th European Signal Processing Conference (EUSIPCO), 1-5, 2019
182019
Parametric and multivariate uncertainty calibration for regression and object detection
F Küppers, J Schneider, A Haselhoff
European Conference on Computer Vision, 426-442, 2022
172022
Confidence calibration for object detection and segmentation
F Küppers, A Haselhoff, J Kronenberger, J Schneider
Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty …, 2022
132022
2D line filters for vision-based lane detection and tracking
A Haselhoff, A Kummert
2009 International Workshop on Multidimensional (nD) Systems, 1-5, 2009
122009
Bayesian confidence calibration for epistemic uncertainty modelling
F Küppers, J Kronenberger, J Schneider, A Haselhoff
2021 IEEE Intelligent Vehicles Symposium (IV), 466-472, 2021
112021
Multisensor data fusion for advanced driver assistance systems-the Active Safety Car project
A Gavriilidis, T Schwerdtfeger, J Velten, S Schauland, L Höhmann, ...
The 2011 International Workshop on Multidimensional (nD) Systems, 1-5, 2011
102011
Towards black-box explainability with Gaussian discriminant knowledge distillation
A Haselhoff, J Kronenberger, F Kuppers, J Schneider
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
82021
Dependency decomposition and a reject option for explainable models
J Kronenberger, A Haselhoff
arXiv preprint arXiv:2012.06523, 2020
72020
Markov random field for image synthesis with an application to traffic sign recognition
A Haselhoff, C Nunn, D Müller, M Meuter, L Roese-Koerner
2017 IEEE Intelligent Vehicles Symposium (IV), 1407-1412, 2017
62017
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20