Image segmentation using text and image prompts T Lüddecke, A Ecker Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022 | 446 | 2022 |
GPT4GEO: How a Language Model Sees the World's Geography J Roberts, T Lüddecke, S Das, K Han, S Albanie arXiv preprint arXiv:2306.00020, 2023 | 56 | 2023 |
Learning to segment affordances T Lüddecke, F Wörgötter Proceedings of the IEEE International Conference on Computer Vision …, 2017 | 36 | 2017 |
Attention on abstract visual reasoning L Hahne, T Lüddecke, F Wörgötter, D Kappel arXiv preprint arXiv:1911.05990, 2019 | 22 | 2019 |
Context-based affordance segmentation from 2D images for robot actions T Lüddecke, T Kulvicius, F Wörgötter Robotics and Autonomous Systems 119, 92-107, 2019 | 22 | 2019 |
Charting new territories: Exploring the geographic and geospatial capabilities of multimodal llms J Roberts, T Lüddecke, R Sheikh, K Han, S Albanie Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024 | 17 | 2024 |
Distributional semantics of objects in visual scenes in comparison to text T Lüddecke, A Agostini, M Fauth, M Tamosiunaite, F Wörgötter Artificial Intelligence 274, 44-65, 2019 | 15 | 2019 |
One-shot multi-path planning for robotic applications using fully convolutional networks T Kulvicius, S Herzog, T Lüddecke, M Tamosiunaite, F Wörgötter 2020 IEEE International Conference on Robotics and Automation (ICRA), 1460-1466, 2020 | 14* | 2020 |
Self-supervised representation learning of neuronal morphologies MA Weis, L Pede, T Lüddecke, AS Ecker Transactions on Machine Learning Research, 2023 | 10* | 2023 |
One-shot multi-path planning using fully convolutional networks in a comparison to other algorithms T Kulvicius, S Herzog, T Lüddecke, M Tamosiunaite, F Wörgötter Frontiers in Neurorobotics 14, 600984, 2021 | 9 | 2021 |
Deep metadata fusion for traffic light to lane assignment T Langenberg, T Lüddecke, F Wörgötter IEEE Robotics and Automation Letters 4 (2), 973-980, 2019 | 9 | 2019 |
Large-scale unsupervised discovery of excitatory morphological cell types in mouse visual cortex MA Weis, S Papadopoulos, L Hansel, T Lüddecke, B Celii, PG Fahey, ... | 8* | 2022 |
The role of data for one-shot semantic segmentation T Luddecke, A Ecker Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021 | 6 | 2021 |
Convolutional neural networks for movement prediction in videos A Warnecke, T Lüddecke, F Wörgötter Pattern Recognition: 39th German Conference, GCPR 2017, Basel, Switzerland …, 2017 | 5 | 2017 |
Learning to Predict Structural Vibrations J van Delden, J Schultz, C Blech, SC Langer, T Lüddecke arXiv preprint arXiv:2310.05469, 2023 | 3 | 2023 |
Fine-grained action plausibility rating T Lueddecke, F Woergoetter Robotics and Autonomous Systems 129, 103511, 2020 | 3 | 2020 |
Computer Vision for Primate Behavior Analysis in the Wild R Vogg, T Lüddecke, J Henrich, S Dey, M Nuske, V Hassler, D Murphy, ... arXiv preprint arXiv:2401.16424, 2024 | 2 | 2024 |
Deep learning for frequency response prediction of a multimass oscillator J Schultz, J van Delden, C Blech, SC Langer, T Lüddecke PAMM 23 (3), e202300091, 2023 | 2 | 2023 |
Minimizing Structural Vibrations via Guided Diffusion Design Optimization J van Delden, J Schultz, C Blech, SC Langer, T Lüddecke ICLR 2024 Workshop on AI4DifferentialEquations In Science, 0 | 2 | |
PriMAT: A robust multi-animal tracking model for primates in the wild R Vogg, M Nuske, MA Weis, T Lüddecke, E Karakoç, Z Ahmed, ... bioRxiv, 2024.08. 21.607881, 2024 | 1 | 2024 |