Speeding up semantic segmentation for autonomous driving M Treml, J Arjona-Medina, T Unterthiner, R Durgesh, F Friedmann, ... | 243 | 2016 |
Hopfield networks is all you need H Ramsauer, B Schäfl, J Lehner, P Seidl, M Widrich, T Adler, L Gruber, ... arXiv preprint arXiv:2008.02217, 2020 | 135 | 2020 |
Rudder: Return decomposition for delayed rewards JA Arjona-Medina, M Gillhofer, M Widrich, T Unterthiner, J Brandstetter, ... Advances in Neural Information Processing Systems 32, 2018 | 132 | 2018 |
Explaining and interpreting LSTMs L Arras, J Arjona-Medina, M Widrich, G Montavon, M Gillhofer, KR Müller, ... Explainable ai: Interpreting, explaining and visualizing deep learning, 211-238, 2019 | 58 | 2019 |
Modern Hopfield Networks and Attention for Immune Repertoire Classification GK Michael Widrich, Bernhard Schäfl, Hubert Ramsauer, Milena Pavlović, Lukas ... Advances in Neural Information Processing Systems 33, 18832-18845, 2020 | 43 | 2020 |
Large-scale ligand-based virtual screening for SARS-CoV-2 inhibitors using deep neural networks M Hofmarcher, A Mayr, E Rumetshofer, P Ruch, P Renz, J Schimunek, ... arXiv preprint arXiv:2004.00979, 2020 | 42 | 2020 |
The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires M Pavlović, L Scheffer, K Motwani, C Kanduri, R Kompova, N Vazov, ... Nature Machine Intelligence 3 (11), 936-944, 2021 | 22 | 2021 |
In silico proof of principle of machine learning-based antibody design at unconstrained scale R Akbar, PA Robert, CR Weber, M Widrich, R Frank, M Pavlović, ... Mabs 14 (1), 2031482, 2022 | 17 | 2022 |
Cross-domain few-shot learning by representation fusion T Adler, J Brandstetter, M Widrich, A Mayr, D Kreil, M Kopp, G Klambauer, ... arXiv preprint arXiv:2010.06498, 2020 | 15 | 2020 |
One billion synthetic 3D-antibody-antigen complexes enable unconstrained machine-learning formalized investigation of antibody specificity prediction PA Robert, R Akbar, R Frank, M Pavlović, M Widrich, I Snapkov, ... BioRXiV, 2021 | 11 | 2021 |
DeepRC: Immune repertoire classification with attention-based deep massive multiple instance learning M Widrich, B Schäfl, M Pavlović, GK Sandve, S Hochreiter, V Greiff, ... BioRxiv, 2020.04. 12.038158, 2020 | 5 | 2020 |
Modern Hopfield Networks for Return Decomposition for Delayed Rewards M Widrich, M Hofmarcher, VP Patil, A Bitto-Nemling, S Hochreiter Deep RL Workshop NeurIPS 2021, 2021 | 4 | 2021 |
Cross-Domain Few-Shot Learning by Representation Fusion T Adler, J Brandstetter, M Widrich, A Mayr, D Kreil, M Kopp, G Klambauer, ... | 2 | 2021 |
Deep Learning Methods for Credit Assignment in Reinforcement Learning and Immune Repertoire Classification/submitted by Michael Widrich M Widrich | | 2022 |
Long Short-Term Memory and convolutional neural networks for SNV-based phenotype prediction/submitted by Michael Widrich M Widrich Universität Linz, 2016 | | 2016 |
Modern Hopfield Networks for Sample-Efficient Return Decomposition from Demonstrations M Widrich, M Hofmarcher, V Patil, A Bitto-Nemling, S Hochreiter | | |
Michael Gillhofer2, Klaus-Robert Müller3, 4, 5, Sepp Hochreiter2, and Wojciech Samek1 L Arras, J Arjona-Medina, M Widrich, G Montavon | | |