Adaptive Stochastic Galerkin FEM M Eigel, CJ Gittelson, C Schwab, E Zander Computer Methods in Applied Mechanics and Engineering 270, 247-269, 2014 | 124 | 2014 |

A review of unified a posteriori finite element error control C Carstensen, M Eigel, RHW Hoppe, C Löbhard Numerical Mathematics: Theory, Methods and Applications 5 (4), 509-558, 2012 | 70 | 2012 |

A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes M Eigel, CJ Gittelson, C Schwab, E Zander ESAIM: Mathematical Modelling and Numerical Analysis 49 (5), 1367-1398, 2015 | 58 | 2015 |

Adaptive stochastic Galerkin FEM with hierarchical tensor representations M Eigel, M Pfeffer, R Schneider Numerische Mathematik 136 (3), 765-803, 2017 | 57 | 2017 |

Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models W Giese, M Eigel, S Westerheide, C Engwer, E Klipp Physical biology 12 (6), 066014, 2015 | 42 | 2015 |

Computational competition of symmetric mixed FEM in linear elasticity C Carstensen, M Eigel, J Gedicke Computer methods in applied mechanics and engineering 200 (41-44), 2903-2915, 2011 | 38 | 2011 |

An adaptive multilevel Monte Carlo method with stochastic bounds for quantities of interest with uncertain data M Eigel, C Merdon, J Neumann SIAM/ASA Journal on Uncertainty Quantification 4 (1), 1219-1245, 2016 | 37 | 2016 |

Variational Monte Carlo—bridging concepts of machine learning and high-dimensional partial differential equations M Eigel, R Schneider, P Trunschke, S Wolf Advances in Computational Mathematics 45 (5), 2503-2532, 2019 | 31 | 2019 |

Local equilibration error estimators for guaranteed error control in adaptive stochastic higher-order Galerkin finite element methods M Eigel, C Merdon SIAM/ASA Journal on Uncertainty Quantification 4 (1), 1372-1397, 2016 | 22 | 2016 |

Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations M Eigel, M Marschall, M Pfeffer, R Schneider Numerische Mathematik 145 (3), 655-692, 2020 | 19 | 2020 |

Alea-a python framework for spectral methods and low-rank approximations in uncertainty quantification M Eigel, E Zander Low rank surrogates for polymorphic fields 33, 2020 | 17 | 2020 |

Non-intrusive tensor reconstruction for high-dimensional random pdes M Eigel, J Neumann, R Schneider, S Wolf Computational Methods in Applied Mathematics 19 (1), 39-53, 2019 | 16 | 2019 |

Reproducing kernel Hilbert spaces and variable metric algorithms in PDE-constrained shape optimization M Eigel, K Sturm Optimization Methods and Software 33 (2), 268-296, 2018 | 15 | 2018 |

Sampling-free Bayesian inversion with adaptive hierarchical tensor representations M Eigel, M Marschall, R Schneider Inverse Problems 34 (3), 035010, 2018 | 15 | 2018 |

Assessment and design of an engineering structure with polymorphic uncertainty quantification I Papaioannou, M Daub, M Drieschner, F Duddeck, M Ehre, L Eichner, ... GAMM‐Mitteilungen 42 (2), e201900009, 2019 | 14 | 2019 |

SDE based regression for linear random PDEs F Anker, C Bayer, M Eigel, M Ladkau, J Neumann, J Schoenmakers SIAM Journal on Scientific Computing 39 (3), A1168-A1200, 2017 | 10 | 2017 |

Convergence bounds for empirical nonlinear least-squares M Eigel, R Schneider, P Trunschke ESAIM: Mathematical Modelling and Numerical Analysis 56 (1), 79-104, 2022 | 9 | 2022 |

Local equilibration error estimators for guaranteed error control in adaptive stochastic higher-order Galerkin FEM M Eigel, C Merdon Berlin: Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014 | 9 | 2014 |

A mesh-free partition of unity method for diffusion equations on complex domains M Eigel, E George, M Kirkilionis IMA journal of numerical analysis 30 (3), 629-653, 2010 | 9 | 2010 |

An adaptive stochastic Galerkin tensor train discretization for randomly perturbed domains M Eigel, M Marschall, M Multerer SIAM/ASA Journal on Uncertainty Quantification 8 (3), 1189-1214, 2020 | 6 | 2020 |