Oleg Arenz
Zitiert von
Zitiert von
A haptic shared-control architecture for guided multi-target robotic grasping
F Abi-Farraj, C Pacchierotti, O Arenz, G Neumann, PR Giordano
IEEE transactions on haptics 13 (2), 270-285, 2019
Efficient gradient-free variational inference using policy search
O Arenz, M Zhong, G Neumann
International Conference on Machine Learning, 2018
Learning trajectory distributions for assisted teleoperation and path planning
M Ewerton, O Arenz, G Maeda, D Koert, Z Kolev, M Takahashi, J Peters
Frontiers in Robotics and AI 6, 89, 2019
Monte carlo chess
O Arenz
Technische Universität Darmstadt, 2012
Trust-region variational inference with gaussian mixture models
O Arenz, M Zhong, G Neumann
The Journal of Machine Learning Research 21 (1), 6534-6593, 2020
Expected information maximization: Using the i-projection for mixture density estimation
P Becker, O Arenz, G Neumann
arXiv preprint arXiv:2001.08682, 2020
Integrating contrastive learning with dynamic models for reinforcement learning from images
B You, O Arenz, Y Chen, J Peters
Neurocomputing 476, 102-114, 2022
Assisted teleoperation in changing environments with a mixture of virtual guides
M Ewerton, O Arenz, J Peters
Advanced Robotics 34 (18), 1157-1170, 2020
Inverse reinforcement learning of bird flocking behavior
R Pinsler, M Maag, O Arenz, G Neumann
ICRA Swarms Workshop, 2018
Optimal Control and Inverse Optimal Control by Distribution Matching
O Arenz, H Abdulsamad, G Neumann
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016
Non-adversarial imitation learning and its connections to adversarial methods
O Arenz, G Neumann
arXiv preprint arXiv:2008.03525, 2020
State-regularized policy search for linearized dynamical systems
H Abdulsamad, O Arenz, J Peters, G Neumann
Proceedings of the International Conference on Automated Planning and …, 2017
Probabilistic approach to physical object disentangling
J Pajarinen, O Arenz, J Peters, G Neumann
IEEE Robotics and Automation Letters 5 (4), 5510-5517, 2020
Deep Adversarial Reinforcement Learning for Object Disentangling
M Laux, O Arenz, J Peters, J Pajarinen
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020
LS-IQ: Implicit reward regularization for inverse reinforcement learning
F Al-Hafez, D Tateo, O Arenz, G Zhao, J Peters
arXiv preprint arXiv:2303.00599, 2023
Digital Twin of a Driver-in-the-Loop Race Car Simulation with Contextual Reinforcement Learning
S Ju, P van Vliet, O Arenz, J Peters
IEEE Robotics and Automation Letters, 2023
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
O Arenz, P Dahlinger, Z Ye, M Volpp, G Neumann
arXiv preprint arXiv:2209.11533, 2022
Self-supervised Sequential Information Bottleneck for Robust Exploration in Deep Reinforcement Learning
B You, J Xie, Y Chen, J Peters, O Arenz
arXiv preprint arXiv:2209.05333, 2022
Sample-Efficient I-Projections for Robot Learning
JO Arenz
Technische Universität Darmstadt, 2021
Feature Extraction for Inverse Reinforcement Learning
O Arenz
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20