Robust physical-world attacks on deep learning visual classification K Eykholt, I Evtimov, E Fernandes, B Li, A Rahmati, C Xiao, A Prakash, ... Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 2730* | 2018 |
Physical adversarial examples for object detectors D Song, K Eykholt, I Evtimov, E Fernandes, B Li, A Rahmati, F Tramer, ... 12th USENIX workshop on offensive technologies (WOOT 18), 2018 | 452 | 2018 |
Internet of things security research: A rehash of old ideas or new intellectual challenges? E Fernandes, A Rahmati, K Eykholt, A Prakash IEEE Security & Privacy 15 (4), 79-84, 2017 | 123 | 2017 |
Note on attacking object detectors with adversarial stickers K Eykholt, I Evtimov, E Fernandes, B Li, D Song, T Kohno, A Rahmati, ... arXiv preprint arXiv:1712.08062, 2017 | 40 | 2017 |
Tyche: A risk-based permission model for smart homes A Rahmati, E Fernandes, K Eykholt, A Prakash 2018 IEEE Cybersecurity Development (SecDev), 29-36, 2018 | 33 | 2018 |
Robust physical-world attacks on deep learning models (2017) K Eykholt, I Evtimov, E Fernandes, B Li, A Rahmati, C Xiao, A Prakash, ... arXiv preprint arXiv:1707.08945, 2018 | 18 | 2018 |
Robust physical-world attacks on deep learning visual classification K Eykholt, I Evtimov, E Fernandes, B Li, A Rahmati, C Xiao, A Prakash, ... | 16 | 2020 |
Tyche: Risk-based permissions for smart home platforms A Rahmati, E Fernandes, K Eykholt, A Prakash arXiv preprint arXiv:1801.04609, 2018 | 12 | 2018 |
Can attention masks improve adversarial robustness? P Vaishnavi, T Cong, K Eykholt, A Prakash, A Rahmati International Workshop on Engineering Dependable and Secure Machine Learning …, 2020 | 8 | 2020 |
Transferring adversarial robustness through robust representation matching P Vaishnavi, K Eykholt, A Rahmati 31st USENIX Security Symposium (USENIX Security 22), 2083-2098, 2022 | 7 | 2022 |
Separation of Powers in Federated Learning (Poster Paper) PC Cheng, K Eykholt, Z Gu, H Jamjoom, KR Jayaram, E Valdez, A Verma Proceedings of the First Workshop on Systems Challenges in Reliable and …, 2021 | 7 | 2021 |
Heimdall: A privacy-respecting implicit preference collection framework A Rahmati, E Fernandes, K Eykholt, X Chen, A Prakash Proceedings of the 15th Annual International Conference on Mobile Systems …, 2017 | 7 | 2017 |
Ares: A system-oriented wargame framework for adversarial ml F Ahmed, P Vaishnavi, K Eykholt, A Rahmati 2022 IEEE Security and Privacy Workshops (SPW), 73-79, 2022 | 5 | 2022 |
Ensuring Authorized Updates in Multi-user {Database-Backed} Applications K Eykholt, A Prakash, B Mozafari 26th USENIX Security Symposium (USENIX Security 17), 1445-1462, 2017 | 4 | 2017 |
Adaptive Verifiable Training Using Pairwise Class Similarity S Wang, K Eykholt, T Lee, J Jang, I Molloy Proceedings of the AAAI Conference on Artificial Intelligence 35 (11), 10201 …, 2021 | 3 | 2021 |
Designing adversarially resilient classifiers using resilient feature engineering K Eykholt, A Prakash arXiv preprint arXiv:1812.06626, 2018 | 3 | 2018 |
Robust classification using robust feature augmentation K Eykholt, S Gupta, A Prakash, A Rahmati, P Vaishnavi, H Zheng arXiv preprint arXiv:1905.10904, 2019 | 2 | 2019 |
Transferable adversarial robustness using adversarially trained autoencoders P Vaishnavi, K Eykholt, A Prakash, A Rahmati CoRR, 2019 | 2 | 2019 |
Benchmarking the Effect of Poisoning Defenses on the Security and Bias of the Final Model NB Angel, K Eykholt, F Ahmed, Y Zhou, S Priya, T Lee, SR Kadhe, M Tan, ... Annual Conference on Neural Information Processing Systems, 2022 | 1 | 2022 |
Accelerating Certified Robustness Training via Knowledge Transfer P Vaishnavi, K Eykholt, A Rahmati Advances in Neural Information Processing Systems 35, 5269-5281, 2022 | 1 | 2022 |