Bayesian linear regression with sparse priors I Castillo, J Schmidt-Hieber, A Van der Vaart The Annals of Statistics 43 (5), 1986-2018, 2015 | 336 | 2015 |
Needles and straw in a haystack: Posterior concentration for possibly sparse sequences I Castillo, A van der Vaart The Annals of Statistics 40 (4), 2069-2101, 2012 | 241 | 2012 |
Nonparametric Bernstein-von Mises Theorems in Gaussian White Noise I Castillo, R Nickl The Annals of Statistics, 1999-2028, 2013 | 135 | 2013 |
On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures I Castillo, R Nickl The Annals of Statistics 42 (5), 1941-1969, 2014 | 115 | 2014 |
A Bernstein–von Mises theorem for smooth functionals in semiparametric models I Castillo, J Rousseau The Annals of Statistics 43 (6), 2353-2383, 2015 | 105 | 2015 |
A semiparametric Bernstein–von Mises theorem for Gaussian process priors I Castillo Probability Theory and Related Fields 152 (1), 53-99, 2012 | 98 | 2012 |
Lower bounds for posterior rates with Gaussian process priors I Castillo Electronic Journal of Statistics 2, 1281-1299, 2008 | 93 | 2008 |
On Bayesian supremum norm contraction rates I Castillo The Annals of Statistics 42 (5), 2058-2091, 2014 | 63 | 2014 |
Thomas Bayes’ walk on manifolds I Castillo, G Kerkyacharian, D Picard Probability Theory and Related Fields 158 (3), 665-710, 2014 | 34 | 2014 |
Empirical Bayes analysis of spike and slab posterior distributions I Castillo, R Mismer Electronic Journal of Statistics 12 (2), 3953-4001, 2018 | 27 | 2018 |
Pólya tree posterior distributions on densities I Castillo Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 53 (4 …, 2017 | 27 | 2017 |
Estimation of the distribution of random shifts deformation I Castillo, JM Loubes Mathematical Methods of Statistics 18 (1), 21-42, 2009 | 26 | 2009 |
On spike and slab empirical Bayes multiple testing I Castillo, É Roquain The Annals of Statistics 48 (5), 2548-2574, 2020 | 24 | 2020 |
Spike and slab empirical Bayes sparse credible sets I Castillo, B Szabó Bernoulli 26 (1), 127-158, 2020 | 24 | 2020 |
Semiparametric Bernstein–von Mises theorem and bias, illustrated with Gaussian process priors I Castillo Sankhya A 74 (2), 194-221, 2012 | 24 | 2012 |
Uncertainty quantification for Bayesian CART I Castillo, V Ročková The Annals of Statistics 49 (6), 3482-3509, 2021 | 16* | 2021 |
Semi-parametric second-order efficient estimation of the period of a signal I Castillo Bernoulli 13 (4), 910-932, 2007 | 15 | 2007 |
Exact adaptive estimation of the shape of a periodic function with unknown period corrupted by white noise I Castillo, C Lévy-Leduc, C Matias Mathematical methods of statistics 15 (2), 146-175, 2006 | 15 | 2006 |
A semiparametric Bernstein-von Mises theorem I Castillo Preprint, 2008 | 9 | 2008 |
Semiparametric Second Order Efficient Estimation of the Period of a Signal and Application I Castillo Université de Paris-Sud. Département de Mathématique, 2005 | 8 | 2005 |