Marissa A. Weis
Marissa A. Weis
University of Tübingen & International Max Planck Research School for Intelligent Systems
Bestätigte E-Mail-Adresse bei
Zitiert von
Zitiert von
Flexibly fair representation learning by disentanglement
E Creager, D Madras, JH Jacobsen, M Weis, K Swersky, T Pitassi, ...
International Conference on Machine Learning, 1436-1445, 2019
Diverse feature visualizations reveal invariances in early layers of deep neural networks
SA Cadena, MA Weis, LA Gatys, M Bethge, AS Ecker
Proceedings of the European Conference on Computer Vision (ECCV), 217-232, 2018
Neuroprotection and endocytosis: erythropoietin receptors in insect nervous systems
N Miljus, B Massih, MA Weis, JV Rison, CB Bonnas, I Sillaber, ...
Journal of neurochemistry 141 (1), 63-74, 2017
Unmasking the Inductive Biases of Unsupervised Object Representations for Video Sequences
MA Weis, K Chitta, Y Sharma, W Brendel, M Bethge, A Geiger, AS Ecker
arXiv preprint arXiv:2006.07034, 2020
Sparse reduced-rank regression for exploratory visualization of paired multivariate datasets
D Kobak, Y Bernaerts, MA Weis, F Scala, A Tolias, P Berens
Biorxiv, 302208, 2018
Benchmarking unsupervised object representations for video sequences
MA Weis, K Chitta, Y Sharma, W Brendel, M Bethge, A Geiger, AS Ecker
The Journal of Machine Learning Research 22 (1), 8253-8313, 2021
Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data
D Kobak, Y Bernaerts, MA Weis, F Scala, AS Tolias, P Berens
Journal of the Royal Statistical Society Series C 70 (4), 980-1000, 2021
Large-scale unsupervised discovery of excitatory morphological cell types in mouse visual cortex
MA Weis, S Papadopoulos, L Hansel, T Lueddecke, B Celii, PG Fahey, ...
bioRxiv, 2022.12. 22.521541, 2022
Self-supervised Representation Learning of Neuronal Morphologies
MA Weis, L Pede, T Lüddecke, AS Ecker
arXiv preprint arXiv:2112.12482, 2021
Class-agnostic Instance Segmentation with Foveated Image Sampling
MA Weis
Eberhard-Karls-Universität Tübingen, 2018
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–10