Folgen
Andreas Sedlmeier
Andreas Sedlmeier
Ludwig-Maximilians-Universität München (LMU Munich), Mobile and Distributed Systems Group
Bestätigte E-Mail-Adresse bei ifi.lmu.de
Titel
Zitiert von
Zitiert von
Jahr
Resilient Multi-Agent Reinforcement Learning with Adversarial Value Decomposition
T Phan, L Belzner, T Gabor, A Sedlmeier, F Ritz, C Linnhoff-Popien
Proceedings of the AAAI Conference on Artificial Intelligence 35 (13), 11308 …, 2021
322021
Uncertainty-Based Out-of-Distribution Detection in Deep Reinforcement Learning
A Sedlmeier, T Gabor, T Phan, L Belzner, C Linnhoff-Popien
arXiv preprint arXiv:1901.02219, 2019
312019
Learning and Testing Resilience in Cooperative Multi-Agent Systems
T Phan, T Gabor, A Sedlmeier, F Ritz, B Kempter, C Klein, H Sauer, ...
Proceedings of the 19th International Conference on Autonomous Agents and …, 2020
282020
The scenario coevolution paradigm: adaptive quality assurance for adaptive systems
T Gabor, A Sedlmeier, T Phan, F Ritz, M Kiermeier, L Belzner, B Kempter, ...
International Journal on Software Tools for Technology Transfer 22, 457-476, 2020
222020
Uncertainty-Based Out-of-Distribution Classification in Deep Reinforcement Learning
A Sedlmeier, T Gabor, T Phan, L Belzner, C Linnhoff-Popien
arXiv preprint arXiv:2001.00496, 2019
222019
Visual transformers for primates classification and covid detection
S Illium, R Müller, A Sedlmeier, CL Popien
arXiv preprint arXiv:2212.10093, 2022
142022
Surgical Mask Detection with Convolutional Neural Networks and Data Augmentations on Spectrograms
S Illium, R Müller, A Sedlmeier, C Linnhoff-Popien
arXiv preprint arXiv:2008.04590, 2020
142020
Policy entropy for out-of-distribution classification
A Sedlmeier, R Müller, S Illium, C Linnhoff-Popien
Artificial Neural Networks and Machine Learning–ICANN 2020: 29th …, 2020
142020
Scenario co-evolution for reinforcement learning on a grid world smart factory domain
T Gabor, A Sedlmeier, M Kiermeier, T Phan, M Henrich, M Pichlmair, ...
Proceedings of the Genetic and Evolutionary Computation Conference, 898-906, 2019
142019
Learning indoor space perception
A Sedlmeier, S Feld
Journal of Location Based Services 12 (3-4), 179-214, 2018
122018
Adapting quality assurance to adaptive systems: the scenario coevolution paradigm
T Gabor, M Kiermeier, A Sedlmeier, B Kempter, C Klein, H Sauer, ...
Leveraging Applications of Formal Methods, Verification and Validation …, 2018
92018
Capturing dependencies within machine learning via a formal process model
F Ritz, T Phan, A Sedlmeier, P Altmann, J Wieghardt, R Schmid, H Sauer, ...
International Symposium on Leveraging Applications of Formal Methods, 249-265, 2022
82022
Nash Equilibria in Multi-Agent Swarms.
C Hahn, T Phan, S Feld, C Roch, F Ritz, A Sedlmeier, T Gabor, ...
ICAART (1), 234-241, 2020
72020
Discovering and learning recurring structures in building floor plans
A Sedlmeier, S Feld
Progress in Location Based Services 2018 14, 151-170, 2018
62018
SAT-MARL: Specification Aware Training in Multi-Agent Reinforcement Learning
F Ritz, T Phan, R Müller, T Gabor, A Sedlmeier, M Zeller, J Wieghardt, ...
arXiv preprint arXiv:2012.07949, 2020
52020
Specification aware multi-agent reinforcement learning
F Ritz, T Phan, R Müller, T Gabor, A Sedlmeier, M Zeller, J Wieghardt, ...
International Conference on Agents and Artificial Intelligence, 3-21, 2021
22021
Evolutionary Generation of Primitive-Based Mesh Abstractions
M Friedrich, FG Cuevas, A Sedlmeier, A Ebert
Václav Skala-UNION Agency, 2019
22019
Quantifying Multimodality in World Models
A Sedlmeier, M Kölle, R Müller, L Baudrexel, C Linnhoff-Popien
arXiv preprint arXiv:2112.07263, 2021
12021
Trajectory annotation using sequences of spatial perception
S Feld, S Illium, A Sedlmeier, L Belzner
Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances …, 2018
12018
Distributed group and rights management for mobile ad hoc networks
M Dürr, M Duchon, K Wiesner, A Sedlmeier
2011 4th Joint IFIP Wireless and Mobile Networking Conference (WMNC 2011), 1-8, 2011
12011
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20