Folgen
Prof. Dr. habil Angela Lausch
Titel
Zitiert von
Zitiert von
Jahr
Indicators for biodiversity in agricultural landscapes: a pan‐European study
R Billeter, J Liira, D Bailey, R Bugter, P Arens, I Augenstein, S Aviron, ...
Journal of Applied ecology 45 (1), 141-150, 2008
9232008
Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability
A Lausch, F Herzog
Ecological Indicators 2 (1), 3-15, 2002
6712002
Analysis of historic changes in regional ecosystem service provisioning using land use data
S Lautenbach, C Kugel, A Lausch, R Seppelt
Ecological indicators 11 (2), 676-687, 2011
3972011
Understanding and quantifying landscape structure–A review on relevant process characteristics, data models and landscape metrics
A Lausch, T Blaschke, D Haase, F Herzog, RU Syrbe, L Tischendorf, ...
Ecological Modelling 295, 31-41, 2015
3632015
Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions
N Pettorelli, M Wegmann, A Skidmore, S Mücher, TP Dawson, ...
Remote Sensing in Ecology and Conservation, 1-10, 2016
3352016
Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany
K Deutschewitz, A Lausch, I Kühn, S Klotz
Global Ecology and Biogeography 12 (4), 299-311, 2003
3272003
Landscape metrics for assessment of landscape destruction and rehabilitation
F Herzog, A Lausch, E Müller, H Thulke, U Steinhardt, S Lehmann
Environmental management 27 (1), 91-107, 2001
2922001
Understanding Forest Health with Remote Sensing -Part I - A Review of Spectral Traits, Processes and Remote-Sensing Characteristics
A Lausch, S Erasmi, DJ King, P Magdon, M Heurich
Remote Sensing 8 (12), 1029, 2016
2322016
Satellite remote sensing to monitor species diversity: potential and pitfalls
D Rocchini, DS Boyd, JB Féret, GM Foody, KS He, A Lausch, H Nagendra, ...
Remote Sensing in Ecology and Conservation 2 (1), 25-36, 2016
2192016
Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives
A Lausch, L Bannehr, M Beckmann, C Boehm, H Feilhauer, JM Hacker, ...
Ecological Indicators 70, 317-339, 2016
2112016
Remote sensing in urban planning: Contributions towards ecologically sound policies?
T Wellmann, A Lausch, E Andersson, S Knapp, C Cortinovis, J Jache, ...
Landsc. Urban Plan., 2020
2082020
16 The Hemeroby Index for Landscape Monitoring and Evaluation
U Steinhardt, F Herzog, A Lausch, E Müller, S Lehmann
ENVIRONMENTAL INDICES: SYSTEMS ANALYSIS APPROACH-Volume I, 237, 2000
1982000
Priority list of biodiversity metrics to observe from space
AK Skidmore, NC Coops, E Neinavaz, A Ali, ME Schaepman, M Paganini, ...
Nature Ecology & Evolution, 2021
1872021
High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms
T Zhou, Y Geng, J Chen, J Pan, D Haase, A Lausch
Sci. Total Environ 138244 (https://doi.org/10.1016/j.scitotenv.2020), 2020
1862020
Factors affecting the spatio-temporal dispersion of Ips typographus (L.) in Bavarian Forest National Park: A long-term quantitative landscape-level analysis
A Lausch, L Fahse, M Heurich
Forest Ecology and Management 261 (2), 233-245, 2011
1712011
Supplementing land-use statistics with landscape metrics: some methodological considerations
F Herzog, A Lausch
Environmental monitoring and assessment 72, 37-50, 2001
1712001
Understanding forest health with remote sensing - Part II - A review of approaches and data models.
A Lausch, S Erasmi, DJ King, P Magdon, M Heurich
Remote Sensing 9 (129), 2017
1692017
Data mining and linked open data – A new perspective for data analysis in environmental research
A Lausch, A Schmidt, L Tischendorf
Ecological Modelling 295, 5-17, 2015
1672015
Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales
A Lausch, M Heurich, D Gordalla, HJ Dobner, S Gwillym-Margianto, ...
Forest Ecology and Management 308, 76-89, 2013
1572013
Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images
T Zhou, Y Geng, C Ji, X Xu, H Wang, J Pan, J Bumberger, D Haase, ...
Science of The Total Environment, 142661, 2021
1502021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20